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Abstract
In 2011, Liu et. al. proposed a three-component reaction-diffusion system to model the

spread of bacteria and its signaling molecules (AHL) in an expanding cell population. At
high AHL levels the bacteria are immotile, but diffuse with a positive diffusion constant at
low distributions of AHL. In 2012, Fu et. al. studied a reduced system without considering
nutrition and made heuristic arguments about the existence of traveling wave solutions.
In this paper we provide rigorous proofs of the existence of traveling wave solutions for
the reduced system under some simple conditions of the model parameters.

1 Introduction
It is well known that spatial patterns are ubiquitous in living organisms. For many years,
scientists are intrigued by these patterns and have developed many mathematical models trying
to explain them [5]. In the paper [4], the authors described a genetic circuit to suppress the
motility of Escherichia coli cells at high cell level. They were able to observe periodic stripe
patterns in their experiments. In the same paper, the authors also developed a three-component
reaction-diffusion system involving the cell density and densities of the signaling molecules AHL
and the nutrients to explain the observed phenomena. In the paper [3], the authors studied
a reduced two-component system and gave heuristic arguments that traveling wave solutions
exist. It is the purpose of this paper to give a rigorous proof of the existence of traveling wave
solutions. The plots of the cell and AHL densities in [3] look remarkably similar to our traveling
wave solutions.

The reduced-system studied in [3] is the following,
∂h

∂t
= Dh

∂2h

∂x2
+ αρ− βh, ,

∂ρ

∂t
=

∂2

∂x2
[µ(h)ρ] + γρ

(
1− ρ

ρs

)
, for t > 0, x ∈ R,
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where µ(h) is the bacteria diffusion which decreases from Dρ to a smaller value Dρ,0 as h
increases pass the threshold value h0. In the above model, ρ is the density of the bacteria Es-
cherichia Coli, which follow logistic growth. The bacteria excrete a small and rapidly degraded
signaling molecules acyl-homoserine lactone (AHL) represented by h in the above model. At
AHL level below h0, the bacteria perform random walk via their run-and-tumble motion and
are motile. At AHL level above h0, the bacteria tumble incessantly and may be considered as
immotile [1, 2]. In this paper, we assume that Dρ,0 = 0 and let µ(h) = Dρ for h < h0 and
µ(h) = 0 for h > h0.

We first scale the system by dividing the first equation by h0, the second equation by ρs.
Then we scale time and space by letting x =

√
Dh/β x

′, t = t′/β to obtain the system

(1.1)


∂h

∂t
=

∂2h

∂x2
+ α̃ρ− h,

∂ρ

∂t
=

∂2

∂x2
[µ(h)ρ] + γ̃ρ(1− ρ),

where α̃ = αρs/(h0β), γ̃ = γ/β and

µ(h) =

D :=
Dρ

Dh

if h < 1,

0 if h > 1.

Suppose the location where h = 1 moves at a constant speed c > 0. We look for traveling
wave solutions of the form ĥ(z) = ĥ(x − ct), ρ̂(z) = ρ̂(x − ct) that are non-constant on the
intervals (−∞, 0) and (0,∞), and have constant limits as z → ±∞. The constant c is called
the wave speed and has to be determined together with ĥ(z) and ρ̂(z). Substituting into (1.1),
we have

ĥ
′′
+ cĥ′ − ĥ = −α̂ρ̂,(1.2)

(µ(ĥ)ρ̂)
′′
+ cρ̂′ + γρ̂(1− ρ̂) = 0.(1.3)

In what follows, we drop the ‘hat’ sign in equations (1.2) and (1.3). Let

h(z) =

{
h+(z) (z ≥ 0),

h−(z) (z < 0),

ρ(z) =

{
ρ+(z) (z ≥ 0),

ρ−(z) (z < 0).

We assume that h is a continuous function and ρ is discontinuous only at z = 0. We let

(1.4) ρ−0 := lim
z↑0

ρ(z)
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and assume that

h−(z) > 1 (z < 0), h+(z) ≤ 1 (z > 0).(1.5)

Note that from (1.5), h(0) = 1. The positive constants ρ−0, α, γ and D are considered as model
parameters in this paper.

The paper is organized as follows: In Section 2, we consider solutions of equations (1.2) and
(1.3). In Section 3, we derive an equation the wave speed must satisfy and also give sufficient
conditions that this equation has a root. The main results are given in Section 4. In Theorem
4.2, we give a sufficient condition for h(z) ≤ 1 when z ≥ 0, which together with the existence of
wave speed imply the existence of traveling waves. In Theorem 4.3, we give sufficient condition
that given c greater than the minimum wave speed, there exists a unique ρ−0 (see (1.4)) such
that traveling wave solutions exist with wave speed c. Section 5 is discussion.

2 Mathematical Preliminaries

2.1 The function ρ

When z < 0, h > 1, so that µ(h) = 0. Solving (1.3) by separation of variables and using (1.4),
we have

(2.1) ρ−(z) =
ρ−0

ρ−0 + (1− ρ−0)eγz/c
.

Note that
lim

z→−∞
ρ−(z) = 1 .

From the weak sense of (1.3), it follows that∫ ∞

−∞
µ(h(z))ρ(z)ψ′′(z) dz − c

∫ ∞

−∞
ρ(z)ψ′(z) dz +

∫ ∞

−∞
γρ(z)(1− ρ(z))ψ(z) dz = 0

for any ψ ∈ C∞(R). For any ε > 0, let ψ ∈ C∞(R) vanish outside of (−ε, ε) and satisfy
0 ≤ ψ ≤ 1 and ψ(0) = 1. Assume that ρ+, ρ′+, ρ′′+ are bounded in [0,∞) and ρ−, ρ

′
− are

bounded in (−∞, 0]. The integration by parts yields∫ ε

0+

Dρ+ψ
′′ dz − c [ρ+ψ]

ε
0+ − c [ρ−ψ]

0−
−ε + c

∫ ε

0+

ρ′+ψ dz + c

∫ 0−

−ε

ρ′−ψ dz = o(1).

as ε ↓ 0. Using the integration by parts twice, we get

−Dρ+(0)ψ′(0)−
[
Dρ′+ψ

]ε
0+

+

∫ ε

0+

Dρ′′+ψ dz + cρ+(0)ψ(0)− cρ−(0)ψ(0) = o(1).

3



Here we used the notation as follows: ρ+(0) = limz↓0 ρ+(z) and ρ−(0) = limz↑0 ρ−(z) etc. By
the assumption of ρ±, we have

−Dρ+(0)ψ′(0) +Dρ′+(0)ψ(0) + cρ+(0)ψ(0)− cρ−(0)ψ(0) = o(1).

Letting ε ↓ 0, we obtain that

(2.2) ρ+(0) = 0, ρ′+(0) =
c

D
ρ−0.

When z > 0, µ(h) = D and (1.3) becomes

(2.3) Dρ′′+ + cρ′+ + γρ+(1− ρ+) = 0 , ρ+(0) = 0, ρ′+(0) =
c

D
ρ−0.

Writing this as a system, we have

ρ′+ = q,

q′ = − c

D
q − γ

D
ρ+(1− ρ+).

It is well known that c ≥ c∗1 := 2
√
γD if ρ+(z) is to remain positive. The Jacobian matrix at

the equilibrium point (1, 0) is

J =

[
0 1
γ

D
− c

D

]
.

We see that (1, 0) is a saddle. Consider the line segment

q = − c

D
(ρ+ − 1)

for ρ+ ∈ [0, 1] in the phase plane. Since dq/dρ+ < −c/D for ρ+ ∈ (0, 1] on this line segment,
the orbit starting from the point (0, cρ−0/D) for any ρ−0 ∈ (0, 1] cannot cross the line segment
and has to cross the ρ+-axis where ρ+(z) makes a maximum and then approaches the origin.
We assume that ρ−0 < 1 for if ρ−0 = 1, then ρ−(z) = 1. Hence, 0 < ρ+(z) < 1 for z > 0. Note
that ρ−(z) is a decreasing function for z < 0.

Lemma 2.1. Let ρ(z; ρ−0) be the solution of (1.3) with lim
z↑0

ρ(z) = ρ−0 ∈ (0, 1). If 0 < ρ−0 <

ρ̃−0 < 1, then 0 ≤ ρ(z; ρ−0) ≤ ρ(z; ρ̃−0) for z ∈ R.

Proof. For z < 0, it is easily seen from (2.1) that ρ−(z, ρ−0) is increasing in ρ−0. We only
need to show ρ(z; ρ̃−0) ≥ ρ(z; ρ−0) in z > 0. Denote ρ(z; ρ̃−0) and ρ(z; ρ−0) by ρ̃(z) and ρ(z),
respectively. We prove by contradiction. By the third condition of (2.3), 0 < ρ(z) < ρ̃(z) for
small positive z. Assume that there is a z∗ > 0 such that ρ̃(z∗) = ρ(z∗) and 0 < ρ(z) < ρ̃(z)
for 0 < z < z∗. Then

D(ρ̃′ρ− ρ̃ρ′)′ + c(ρ̃′ρ− ρ̃ρ′) = D(ρ̃′′ρ− ρ̃ρ′′) + c(ρ̃′ρ− ρ̃ρ′)

= −γρ̃(1− ρ̃)ρ+ γρ(1− ρ)ρ̃

= γρ̃ρ(ρ̃− ρ) > 0
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for 0 < z < z∗. Multiplying the above by ecz/D and integrating both sides over (0, z) yield

ρ̃′ρ− ρ̃ρ′ > 0

for 0 < z ≤ z∗. This implies that ρ̃(z∗) > ρ(z∗), which contradicts the choice of z∗. The proof
of the lemma is complete.

2.2 The function h

Consider the equation

(2.4) h′′ + ch′ − h = −αρ(z).

Since h(z) is continuous, integrating (2.4) from −ε to ε and letting ε ↓ 0, we have h′(0−) =
h′(0+) so that h is differentiable. Clearly, h is not C2.

Consider the homogeneous differential equation

h′′ + ch′ − h = 0.

We denote the characteristic roots by

λ± :=
−c±

√
c2 + 4

2
.

Applying the variation of constant formula to (2.4), we have

(2.5) h(z) = (C1 + A(z)) eλ+z + (C2 +B(z)) eλ−z,

where

A(z) = − α√
c2 + 4

∫ z

0

ρ(ξ)e−λ+ξdξ,

B(z) =
α√
c2 + 4

∫ z

0

ρ(ξ)e−λ−ξdξ.

Here we have used the facts that

(2.6) λ+ − λ− =
√
c2 + 4, λ+λ− = −1.

Since A(0) = 0, B(0) = 0, the condition h(0) = 1 implies that C1+C2 = 1 so that C2 = 1−C1.
In order for h to be bounded for z > 0, since λ+ > 0, we need C1 = −A(∞). Next we

confirm that (C1 + A(z))eλ+z in (2.5) converges as z → ∞. Since λ+ > 0,

(C1 + A(z))eλ+z =
α√
c2 + 4

∫ ∞

z

ρ(ξ)e−λ+(ξ−z) dξ
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converges to zero if ρ(z) is integrable near infinity. Now since λ− < 0, C2 e
λ−z goes to zero as

z → ∞. Also

|B(z)|eλ−z =
α√
c2 + 4

∫ z

0

ρ(ξ)eλ−(z−ξ) dξ =
α√
c2 + 4

∫ z

0

ρ(z − τ) eλ−τ dτ .

Since ρ(∞) = 0, the dominated convergence theorem implies that the above term goes to zero
as z → ∞. Hence we obtain

lim
z→∞

h(z) = 0.

From the above, we see that h(z) can also be written as

h(z) =
α√
c2 + 4

∫ ∞

z

ρ(ξ)e−λ+(ξ−z)dξ +
α√
c2 + 4

∫ z

0

ρ(ξ)eλ−(z−ξ)dξ +Keλ−z,(2.7)

where
K := 1− α√

c2 + 4

∫ ∞

0

ρ(ξ)e−λ+ξdξ.

3 The wave speed c

In this section, we first derive an equation for the wave speed, which is the equation (3.1) below.
We then give sufficient conditions for the equation (3.1) to have a root.

Proposition 3.1. If c > 0 is such that h(z) is differentiable at the origin, then c satisfies the
equation

(3.1) 1− α√
c2 + 4

∫ 0

−∞
ρ(z; ρ−0)e

−λ−z dz − α√
c2 + 4

∫ ∞

0

ρ(z; ρ−0)e
−λ+z dz = 0.

Proof. Multiplying equation (2.4) by e−λ+z and integrating the result from 0 to ∞, we have,

h′(0+) = λ− + α

∫ ∞

0

ρ(ξ)e−λ+ξ dξ.

Similarly, multiplying equation (2.4) by e−λ−z and integrating the result from −∞ to 0, we
have

h′(0−) = λ+ − α

∫ 0

−∞
ρ(ξ)e−λ−ξ dξ.

Setting the two derivatives of h at the origin equal and using the fact λ+ − λ− =
√
c2 + 1, we

obtain equation (3.1). The proof of the proposition is complete.
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Next, we want to give a sufficient condition that equation (3.1) has a root. From the
paragraph above Lemma 2.1 the root lies in the interval (c∗1,∞) since we have assumed that
ρ−0 < 1. Let

(3.2) N(c, ρ−0) :=
1√
c2 + 4

(∫ 0

−∞
ρ(z; ρ−0)e

−λ−z dz +

∫ ∞

0

ρ(z; ρ−0)e
−λ+z dz

)
.

Then equation (3.1) is 1− αN(c, ρ−0) = 0.

Lemma 3.2. If αρ−0 > γ + 1, then lim inf
c→∞

N(c, ρ−0) > 1/α. Thus, if N(c∗1, ρ−0) < 1/α, then
equation (3.1) has a root.

Proof. Define

I :=

∫ ∞

0

ρ(s)e−λ+sds.

Multiplying (2.3) by e−λ+z and integrating the result over (0,∞) yield

D

∫ ∞

0

ρ′′(z)e−λ+zdz + c

∫ ∞

0

ρ′(z)e−λ+zdz + γ

∫ ∞

0

ρ(z)(1− ρ(z))e−λ+zdz = 0.

Since ∫ ∞

0

ρ′(z)e−λ+zdz = λ+I,

∫ ∞

0

ρ′′(z)e−λ+zdz = −ρ′+(0) + λ2+I,

we obtain
D(−ρ′+(0) + λ2+I) + cλ+I + γI > 0.

From λ2+ + cλ+ − 1 = 0,

I >
Dρ′+(0)

c(1−D)λ+ + γ +D
=

cρ−0

c(1−D)λ+ + γ +D
.

Therefore,

N(c, ρ−0) ≥
1√
c2 + 4

I >
cρ−0{

c(1−D)λ+ + γ +D
}√

c2 + 4
=

η(1 + η)ρ−0

2(1−D)η + (γ +D)(1 + η)
,

where
η :=

c√
c2 + 4

.

Since c ≥ c∗1 = 2
√
γD,

(3.3) η∗1 :=

√
γD

γD + 1
≤ η < 1.

The assumption of the theorem implies that

lim inf
c→∞

N(c, ρ−0) ≥
ρ−0

1 + γ
>

1

α
.

Since equation (3.1) is 1− αN(c, ρ−0) = 0, the proof of the lemma is complete.
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By Lemma 2.1, N(c, ρ−0) is increasing in ρ−0 ∈ (0, 1). We also note that if (3.1) is satisfied,
then

h(z) =
α√
c2 + 4

∫ ∞

z

ρ(ξ)e−λ+(ξ−z)dξ +
α√
c2 + 4

∫ z

−∞
ρ(ξ)eλ−(z−ξ)dξ.(3.4)

Proposition 3.3. If α ≤ 1, then there are no bounded traveling wave solutions to (1.1).

Proof. Note that λ− < 0 < λ+, λ+ + λ− = −c and λ+ − λ− =
√
c2 + 4. By (3.1) and

0 ≤ ρ(z) < 1, we have

N(c, ρ−0) <
1√
c2 + 4

(∫ 0

−∞
e−λ−z dz +

∫ ∞

0

e−λ+z dz

)
=

1√
c2 + 4

(
1

λ+
− 1

λ−

)
= 1.

If α ≤ 1, then equation (3.1) is never satisfied. The proof of the proposition is complete.

4 Existence of traveling wave solutions
To show the existence of bounded traveling wave solutions, we must check that the solution h
we constructed satisfies

(4.1) h(z) > 1 (z < 0), h(z) < 1 (z > 0).

In the proof of Proposition 3.1, we have demonstrated that

h′(0) = λ− + α

∫ ∞

0

ρ(z)e−λ+z dz = λ+ − α

∫ 0

−∞
ρ(z)e−λ−z dz.

Now ρ−(z) decreases from 1 to ρ−0 as z increases from −∞ to 0. Therefore,

h′(0) <
−c+

√
c2 + 4

2
− αρ−0

∫ 0

−∞
e−λ−z dz =

2(1− αρ−0)

c+
√
c2 + 4

.

A sufficient condition for h′(0) < 0 is

(4.2) ρ−0 >
1

α

The condition h′(0) ≤ 0 is necessary since h(0) = 1.
Let us consider the first case of (4.1).

Lemma 4.1. Let α > 1 and let 1/α < ρ−0 < 1. Then h(z) decreases from α to 1 as z increases
from −∞ to 0.
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Proof. Let u(z) = h′(z). Then u satisfies u′′ + cu′ − u > 0 for z < 0. Thus u cannot have a
positive local maximum. Every horizontal line above the z-axis can only intersect the graph of
u once. Since u(0) < 0 by our assumption (4.2) and h(z) is bounded, u(z) < 0 on (−∞, 0).

Now we show that h(−∞) = α. The first term of the right hand side of (3.4) can be
rewritten as

α√
c2 + 4

∫ ∞

z

ρ(ξ)e−λ+(ξ−z)dξ =
α√
c2 + 4

∫ ∞

0

ρ(s+ z)e−λ+sds→ α√
c2 + 4

1

λ+

because ρ−(z) → 1 as z → −∞. For the second term, we have

α√
c2 + 4

∫ z

−∞
ρ(ξ)eλ−(z−ξ)dξ =

α√
c2 + 4

∫ ∞

0

ρ(z − s)eλ−sds→ − α√
c2 + 4

1

λ−

as z → −∞. Therefore,

h(−∞) =
α√
c2 + 4

1

λ+
− α√

c2 + 4

1

λ−
= α.

The proof of the lemma is complete.

Theorem 4.2. Let (c, ρ−0) satisfy (3.1) and let z1, z2 (0 < z1 < z2) be the two roots of ρ(z) =
1/α. Suppose

(4.3)
∫ ∞

z1

ρ(ξ)e−λ+ξdξ ≤ |λ−|
α

e−λ+z1 .

Then there exists a traveling wave solution with speed c which satisfies h(z) ≤ 1 for any z ≥ 0.

Proof. Set

ϕ1(z) :=
1

λ+ − λ−

∫ ∞

z

(αρ(ξ)− 1)e−λ+(ξ−z)dξ, ϕ2(z) :=
1

λ+ − λ−

∫ z

−∞
(αρ(ξ)− 1)eλ−(z−ξ)dξ.

From (2.6) and (3.4),

h(z) = ϕ1(z) + ϕ2(z) + 1,

h′(z) = λ+ϕ1(z) + λ−ϕ2(z) = (λ+ − λ−)ϕ1(z) + λ−(h(z)− 1).

At a critical point of h, i.e., h′(z) = 0, the condition

h(z)− 1 =
λ+ − λ−
−λ−

ϕ1(z) ≤ 0

is equivalent to

(4.4) ϕ1(z) ≤ 0.
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When z ≥ z2, αρ(z) ≤ 1 and the definition of ϕ1(z) implies (4.4). Thus, h(z) ≤ 1 holds for
z ≥ z2. It follows from (4.3) that∫ ∞

z1

(αρ(ξ)− 1)e−λ+ξdξ ≤ 0.

From the definitions of z1, z2, ρ(z) ≥ 1/α in [α1, α2] so that∫ ∞

z

(αρ(ξ)− 1)e−λ+ξdξ ≤ 0

for any z ∈ [z1, z2]. Since αρ(z) − 1 ≤ 0 for z ∈ [0, z1], ϕ1(z) ≤ 0 for any z ≥ 0 under (4.3).
Therefore, we have h(z) ≤ 1 for all z > 0. Note that if ρ(z) ≤ 1/α for z ≥ 0, then one can set
α1 = α2 = 0. The proof of the theorem is complete.

Recall that c∗1 = 2
√
γD. The following theorem gives a sufficient condition to the result that

by changing ρ−0, every c (> c∗1) can be a root of equation (3.1).

Theorem 4.3. Assume that

(4.5)
((4 + γ −D)

√
γD + (γ +D)

√
γD + 1)(

√
γD + 1 +

√
γD)

{4(1−D)
√
γD + 2(γ +D)(

√
γD + 1 +

√
γD)}

√
γD + 1

≥ 1

α
.

Then for any c (> c∗1), there exists a ρ−0 ∈ (0, 1) such that c satisfies (3.1). Thus, there exists
a traveling wave solution with speed c if h(z) ≤ 1 for z ≥ 0.

Proof. As ρ−0 → 0, (ρ, h) converges to (0, 0) locally uniformly as z → ∞ and

lim
ρ−0→+0

N(c, ρ−0) = 0 .

If we take ρ−0 = 1, then ρ−(z) ≡ 1. Therefore, from (3.2) and the proof of Lemma 3.2, we can
replace η by η∗ defined in (3.3) to obtain

N(c, 1) ≥ η + 1

2
+

η(1 + η)

2(1−D)η + (γ +D)(1 + η)

=
((4 + γ −D)η + γ +D)(1 + η)

4(1−D)η + 2(γ +D)(1 + η)
.

Because
∂

∂η

η(1 + η)

2(1−D)η + (γ +D)(1 + η)
=

η2(2 + γ) +Dη(1− η) + γη + (γ +D)(1 + η)

{2(1−D)η + (γ +D)(1 + η)}2
> 0,

we can replace η by η∗ defined in (3.3) to obtain

N(c, 1) >
((4 + γ −D)η∗ + γ +D)(1 + η∗)

4(1−D)η∗ + 2(γ +D)(1 + η∗)

=
((4 + γ −D)

√
γD + (γ +D)

√
γD + 1)(

√
γD + 1 +

√
γD)

{4(1−D)
√
γD + 2(γ +D)(

√
γD + 1 +

√
γD)}

√
γD + 1

.
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It follows from (4.5) and the monotonicity of N(c, ρ−0) in ρ−0 that there is a unique ρ−0 ∈ (0, 1)
such that

N(c, ρ−0) =
1

α
.

The proof of the theorem is complete.

Figure 1 shows the profile of a traveling wave solution with parameter values and wave speed
that satisfy equation (3.1) and ineuality (4.3). The parameter values and wave speed are given
in the caption of Figure 1.
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Figure 1: Traveling wave solutions with parameter values up to four places after decimal:
α = 2.4862, ρ−0 = 0.5130, γ = 0.1565, D = 0.3439. Wave speed is approximately c = 0.6430.
Note that h(z) lies below 1 and is not monotone for z > 0.

5 Discussion
The three-component model in [4] was constructed to explain the periodic stripes patterns the
authors observed in their experiments. They simulated the system and the results are presented
in the Movie S4 in the paper’s Supporting Online Material. In [3], the authors mentioned that
their reduced system is able to initiate stripe patterns and maintain them for a while, but the
stripes are eventually lost when the cell density reaches ρs throughout the system. Such kind
of transient patterns will be difficult to prove mathematically.
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