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Abstract
In this paper it is discussed whether reaction and linear diffusion bring about
a effect of nonlinear diffusion or not. It is proved that a cross—diffusion system
for two competitive species is realized in a singular limit of a reaction—diffusion
system with a small parameter under some assumptions.

1 Introduction

In this paper the following type of parabolic equations is called a reaction—diffusion
system:

u; = DAu+ f(u), (1.1)
where

u = u(x,t) = t(ul(x’t)> T ,UM(ZE,t)), f(u) = t(fl(u)7 T an(u))7

D is a diagonal matrix whose elements are positive (or non-negative). In other words, a
reaction—diffusion system consists of two parts: one is a kinetic term f(u); the other is a
diffusion one DAwu. Many manuscripts reveals various dynamics of reaction—diffusion
systems. Thus we meet the questions: “What sort of behavior can be exhibited by
solutions to the reaction—diffusion system 7”7, or “How rich are the dynamics of the
reaction—diffusion system 7”7 One of the ways to answer these questions is to “realize”
the dynamics of parabolic systems which do not belong to reaction—diffusion systems in
the reaction—diffusion systems. As remarkable researches from a related viewpont we
refer to [15, 3], where Poldcik has proved that any finite dimensional vector field can be
realized in the equation

u = Au+ f(u, Vu)
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in a bounded domain in RY if f is chosen appropriately. From the morphological point
of view, Mimura et al. showed in [13] that reaction—diffusion systems can ‘“realize”
density—dependent diffusion models. They considered the colonies of some species of
bacteria which exhibit the various spatial patterns. Though several density—dependent
diffusion models for such spatial patterns had already been proposed (e.g., [6]), they
obtained the similar spatial patterns even from a reaction—diffusion system by intro-
ducing “inactive state” of a bacterium explicitly. Their concept of modelling leads us
to the concept of “reaction—diffusion approximation”.

Our aim is to find a reaction—diffusion system which approximates a cross—diffusion
system

uy = Aa(u*) + f(u*,v"), r e, t>0, (12)
vf = AB(u*,v*) + g(u*, v*), reQ, t>0 ‘
under the Neumann boundary condition
ou* ov*
=0, — = Q, t 1.
o 0, 5 0, 2z€0Q,t>0 (1.3)
and the initial condition
u*(z,0) = up(x), v*(z,0) =vo(x), €. (1.4)

For a typical example,

a(u) = (a0 + aru)u,  B(u,v) = (B + fru + Bav)v,
f(uv U) - (fO — fiu— f2v)u7 g(u, U) = (90 - g1u — 927})%

where o, (o, f;,9; are positive constants and ay, 31, 32 are nonnegative ones. This
example is one of the ecological models which Shigesada et al. [16] proposed in order
to introduce the population pressure by interference between individuals into a Lotka—
Volterra competition system. In this case u* and v* stand for population densities for
two competing species. The species for v* has a tendency to move towards the lower
distribution u* (also see [14]). Namely this system includes the “negative chemotactic
effect”. This effect induces the complex dynamics including the Hopf bifurcations and
the segregation of a convex habitat between two similar species (see [5, 8, 10, 11, 12]).
It is well-known in [7] that if Q is convex there are no stable inhomogeneous equilibria
in the competition—diffusion system, i.e., oy = 1 = [ = 0. It is shown in [10, 11]
that the stable spatial segregation takes place if 5; > 0, which is called cross—diffusion
induced instability. In this paper we will show that the cross—diffusion system (1.2) is
actually a singular limit of a reaction—diffusion system with a small parameter. Though
reaction—diffusion systems do not seem to bring about the negative chemotactic effect,
this fact might imply that reaction—diffusion systems include such a effect. This method
also tells us the relationship between Turing’s instability and the cross—diffusion induced
instability, which is shown in [4].



Hereafter we assume that € is a bounded domain in R" with a smooth boundary
092, and «, 3, f, g are smooth functions satisfying

a € C'(R), e C(R?), feC*(R?), g C*(R?),
inf o/ (u) > 0, inf G,(u,v) >0,
u>0 u>0,0>0

and

Uy € 04(5), Vg € 04(5),
up(z) >0, vo(x) >0 in Q.

We can take constants dy, ds, ds and d, satisfying
. 12 .
{ 0<d < 11Lr>1%04 (w), 0<dy< u>1g}f>oﬁv(u,v),
d3>0, d37éd1, d4>0, d47£d2.
Set
a(u) == a(u) — dyu, bu,v) = p(u,v) — dyv.

For a small positive parameter €, we consider an auxiliary semilinear parabolic system
with fast reactions in w and z:

(= diAu+ Aw + flu,v), z€Q,t>0,

v = doAv + Az + g(u, v), reQ, t>0,
1
wy = dzsAw + —(a(u) — w), x e t>0, (1.7)
€
1
2z = dyDNz+ —(b(u,v) —2), x€Q,t>0
L €
under the boundary condition
ou ov ow 0z
o, Do, o, E oy 80, t>0 1.8
on 7 dn 7 On i A e (18)
and the initial condition
u(z,0) = ug(x), v(z,0) = vo(z), (1.9)
w(z,0) = alug(x)), 2(x,0) = b(ug(x), vo(x)), = €. '
Since we can rewrite (1.2) as
uf = diAu* + Aa(u®) + f(u*,v*), reQ, t>0, (1.10)
vf = da Av* + Ab(u*,v*) + g(u*,v*), x€Q, t>0, '



we may expect that (w, z) approximates to (a(u),b(u,v)) in (1.7) and that (u,v) con-
verges to the solution of (1.10) as € tends to 0. Actually we will show later that the
dynamics of (1.7) under (1.8) and (1.9) is close to that of (1.10) under (1.3) and (1.4)
as € — 40, if they are restricted to any bounded region. Notice that the system (1.7)
is almost a reaction—diffusion system. Indeed, applying the linear transformation

w . z
v=v—

Cdy—dy’ dy—dy’

U=1u w=w, Zz=2z,

ie.,

i w . z
U=mu V=7
dz —dy’ dy —do’

we obtain the following reaction—diffusion system

; ~ ~

z
4 AR _ .
i = dy u—l—f(u+d3_dl,v—|—d4_d2)

1 w
= — 0 Q, t
(dg—dl)e<a(u+d3—d1) w), ref, t>0,

. z
v+

. - w
VUV = dQAU+g(U+d3_dl, d4—d2>

X . . (1.11)
—— (bt + ———, 0 —Z Q, t
(d4—d2)(—:< <u+d3—d1’v+d4—d2) z), ref t>0,
N N W -
Wy = d3Aw+E(a(u+d3—d1)_w)’ x €N t>0,
- .1 . w . Z .
\ zt—d4Az+g(b(u+dg_dl,v+d4_d2)—z), re, t>0.

It is not clear whether @, o, w and Z in (1.11) can stand for some biological quantities.
However, after we accomplished the present paper, we found another reaction—diffusion
approximation to (1.2) under additional assumptions on « and 3 (see [4]). In the later
approximation the solutions of a reaction—diffusion system like (1.11) can stand for the
population densities of some parts of the competing species which are described by the
model of Shigesada et al. in [16]; besides, our later approximation gives us a better
understanding of cross—diffusion in biological models.

We remark that the existence of local solutions of (1.7) follows from that of (1.11).

THEOREM 1.1. Assume (1.5) and (1.6). Fiz positive numbers dy,ds,ds,ds and
functions a(r),b(r, s) as above. For positive constants Ry and Ry, there exist functions

a(r),b(r,s), f(r,s) and g(r,s) such that

a(r> = a(r), B(T, S) = b(T, 5)7 JE(T’, 5) = f(T, 5)7 g(T, 5) = g(?”, S)
for any (r,s) € [0, Ry] x [0, Ry] (1.12)
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and that the solution (u

a, b, f, g replaced by a,
If the solution (u*,v

C*HQ x [0,T)]) and

0w, 2) = (u(z,t), vz, 1), wlz,t), z(x,t)) of (L7)~(1.9) with
b, f, g respectively exists globally in time.
= (u(z,

*) t),v*(x,t)) of (1.2)~(1.4) belongs to C*(Q2 x [0,T7]) x

0 <u(z,t) <Ry, 0<0v"(z,t) <Ry in Q x [0,T]

for some positive constant T', then the following inequalities hold

|u — u*{|coo,r1;02(0) < c¢e,

v —v*|lcoo,r;L2 () < ¢, (1.13)
|w — a(u*)|lcoqorizz) < e, '

|2 = b(u*, v")||coqorpsze)y < cie

for € > 0 where ¢y is a positive constant independent of € and (u,v,w, z). Moreover, if
N < 4, then the following inequalities also hold:

( IV (u—u)[coo.r1:22 () < cpetld
V(v —v*)|[coqo,r;22(0) < et
1V (w — a(u*))]|coqo,m:2 ) < et
IV (2 = b(u*, v*))llcoqomzay < cae™?, (1.14)
HA(U — u*)Hco ([0,T];L2(2)) S 0361/4, ’
A0 —v")||coqo.ry:L2(0) < eyt
[A(w = a(u ) leoqorirzy < cse?,

Az = b(u*, v)lcoqorsze) < czel/t

for 0 < e < ¢y where ca, 3 and €y are positive constants independent of € and (u, v, w, z).

As long as (u(x,t),v(z,t)) belongs to the region [0, Ry] % [0, Rs], (u,v,w, z) in Theo-
rem 1.1 is the solution of (1.7)—(1.9) without the replacement of a, b, f and g. Thus this
theorem implies that solutions to the cross—diffusion system (1.2) can be approximated
by the linear combinations of solutions to the reaction—diffusion system (1.11) in any
bounded region in the phase space.

The proof of this theorem will be given in §2. We will construct a, b, f and § by
suitably truncating a, b, f and g respectively around the bounded region [0, R;] x [0, Rs)].
The constants ¢, ¢o and c3 depend on Ry, Ry, u*, v*, and thus on 7.

See [1] for the existence, uniqueness, and regularity of a local solution of (1.2)-(1.4),
where (ug, vg) € I/Vp1 (Q)% for p > N. In particular, if a, 3, f and g are sufficiently smooth,
then the local solution instantly becomes sufficiently smooth up to the boundary. See
also [2] and the references therein. Thus the assumptions for v* and v* are not so
restricted. As for its global existence, see, e.g., [9, 17, 18].



2 Modification of equations

To prove Theorem 1.1, we will construct the functions a, l;, f , and ¢ in this section.

First we introduce the following stronger assumption for a, b, f and g than (1.5) and
(1.6):

(A) There exist positive constants k; (i = 1,2, 3,4) satisfying
(a'(r) > ki,

ag—&-l

O vl b(r. )

1<j+1<3, 4,1>0
—l—'/ buu(r,0)do| + ‘/ by (T, )da‘ < ks,
0

| fulr, $)| + | folr, s)| + |fuu(7”07 S+ | fuo (1, 8) | + | oo (7, )| < ks
19u(r, $)| + 90 (r, )| + [Guu(r; $)| + [Gu(r, $)| + [gou (7, 8)| < ks

for any 7, s € R.

THEOREM 2.1. Let (u*,v*) = (u*(x,t),v*(z,t)) (resp. (u,v,w,z) = (u(x,t),v(z,t),
w(z,t),z(x,t))) be the solution of (1.2) — (1.4) (resp (1.7) = (1.9)) int € [0,T]. Assume
(A) and

[ |z ) + ([0 | oo ) + VU™l L) + (VO oo ()
+ldsAa(u®) — a'(u)ui| mg)
H||daAb(u*, v*) — by (w*, v*)uy — by (u*, v*) V] || 1) < My (2.2)

for 0 <t <T. Then (1.13) holds.

The proof will be given in the next section.
For positive numbers 6 and R we can easily choose a C*°-function x(z;0, R) as
follows:

. (1 for z € [0, R],
X($757 R) - { 0 for x € (—OO, —25] U [R + 257 00)7

and

0<x(z;0,R) <1,  sup [x'(2;0,R)| <

—oo<r<o0

Sl

LEMMA 2.2. Assume (1.5) and (1.6). Let Ry and Ry be positive numbers, and set

my = min d (u), my = min by (u,v).
u€[0,R1] (u,v)€[0,R1]%x[0,R2]



If 61 and 6y are positive but so small, then (A) holds true for the following functions
a, b, f, g and some positive constants ky,--- , ks:

a(u) = muu+a(0) + /Ou x1(s) (a'(s) — my) ds,

Buy0) = mav -+ xa(0) (Xl(U)b(% 0+ [ xalus) 0l —m2>ds),

f(uvv> = X3(u,v)f(u,v),

f](u,v) = X3(uav)g(uav)7
where
X1(U) = X(u;517R1>7
1
Xz(v) = X(U;é—,Rﬁ,
2
X3(va) = X(U;517R1)X(U;51,RQ)'

We can easily check (1.12). Since the support of [ x3(u, s) (by(u, s) — m2) ds is not
compact, we cannot obtain the boundedness of [ [ x3(u, s) (by(u, s) — ms) dsdo and
its derivatives. Therefore it is necessary to multiply [J x3(u, s) (by(u,s) —ms)ds by
x2(v) in the definition of b.

Proof. We show (2.1) only for b. If &, is so small, then
mo 2
X3(u, v) (by(u,v) — mg) > T for (u,v) € R*.

We can choose 9, so small that

m

Xa(v) (Xl(u)b(u, 0) + /Ov X3(u, s) (by(u, s) —ms) ds) > _TZ for (u,v) € R*

Differentiating b in v, we have

by(u,v) = ma+ x5(v) (Xl(u)b(u, 0) + /Ov X3 (u, 8) (by(u, 8) —ma) ds)
+x2(0)x3(u, ) (by(u, v) —my)

mo mo
> s _ =
Z M2 1 1
e
2
The other conditions of (2.1) can be checked. O

7



Proof of Theorem 1.1. The inequalities (1.13) are a direct consequence of Lemma 2.2
and Theorem 2.1. Notice that the global existence of (u,v,w, z) is guaranteed by the
fact: the grow-up rates of the nonlinear terms in (1.11) are less than or equal to some
affine functions of (@, 0, w, Z) after the replacement of (a, b, f, g) with (a, b, f, g). Since
the fourth derivatives of @ and b in Lemma 2.2 are bounded, the latter part of Theorem
1.1 is deduced from Lemma 2.2 and the following theorem which will be proved in the
next section. 0

THEOREM 2.3. Assume (A), (2.2), N <4 and

0 0
80 ey + 160 i + [ gmate)| | s o)
©@ @ on L2(89) on L2(89)
+ ldsDa(u”) — a'(u)w;]] g2 o
+ [[daAb(u”, v") = by (u®, v*)uy — by (u”, 0)0p | oy < Mo (2.3)

for 0 <t <T. Then (1.14) holds.

3 Proof

Let ||-|| be a L:norm and (-, -) an inner product in L2(2). Let (u*,v*) = (u*(x,t),v*(x,t))
and (u,v,w,z) = (u(x,t),v(z,t),w(z,t),w(x,t)) be as in Theorem 2.1. Hereafter
for the simplicity of notation, the positive constants independent of € and (u,v,w, 2)
(namely, depending only on dy,--- ,dy, k1, -+, ks, My, My, T,Q, N, and €) is denoted
by ¢; (i =1,2,---).

Set

U=u—u", Vi=v—0v", W:i=w-al"), Z:=z->bu"v"),

*

w*i=a(u®), 2% :=b(u",v"),

which satisfy
(U, = AU + AW + f(u* + U, v* + V) — f(u*,v*),
Vi = do AV + AZ + g(u* + U,v* + V) — g(u*, v*),

1
W, = ds AW + —(a(u* + U) — a(u*) — W) + dsAw* — w}, (3.1)
€

1
Zy = dyANZ + —(b(u* + U, v* + V) — b(u*,v*) — Z) + dyANz* — 2]
€



u

a(s)ds,
Ub(u,s)ds,
(A(u*+U) — A(u*) — A'(u*)U) dx,

(B(u*+U,v*+ V) — B(u*,v*) — B,(u",v")U — B,(u*,v")V) dx.

=
TR
S—S— 55— 5—

Proof of Theorem 2.1. Differentiating E; in ¢, we have

dE,

E?::/kAW”%Wﬁ+UQ—AWW&—A@&@U—A@S&ML
Q

= [ {(atw +v) = atw Ui + (ate +0) = aw) = ()0 ) }d,

:QA{@W#U%wmeAU+AW+ﬂM+MW+Vwﬁwwm>

+ /1 /1 a’(u* + 9192U)01U2u:d91d02}dx. (3.2)
o Jo
The first term of the right hand side of (3.2) is estimated as follows:
LWWH%D—MWW@AU+AW+f@U%Mﬁ+W—f@%ﬂﬂx
< —A<ﬂm+wmvw+vUpwmmvw)dmww

+/Q(G(U* +U) = a(u"))AWdz + kska|[U[[ (U] + [IV]]),

< /(a(u* +U) —a(u")AWdz — / dia' (u* + U)|VU |*dx
Q Q
+diks MU VU + Eskal | U (NU] =+ V1)
" . drk
< (a(u” +U) —a(u’), AW) - %HVUH2 +a(lU*+1VIP), (3.3)

where ¢4 := 3ksky/2 + di k3 M7 /(2k;). Substituting (3.3) into (3.2), we get

dFE,

4By _ ik
dt

< (a(u*4+U) —a(u*), AW) 5

IVUI* + e (IUIF+ IVIF),  (3.4)

where ¢5 := ¢4 + k3M; /2. Taking an inner product between the third equation of (3.1)



and —AW yields
1 * *
SEIVWIE = AW~ (a(u’ +U) — au), AW)
1
+H(V(dsAw* — w)), VW) — EHVVVH2

AW = (alu* +U) — a(u’), AT)

IN

—ZHVVVH2 + cge, (3.5)
where cg := M?/2. The above two inequalities (3.4) and (3.5) immediately imply

d 1 1 dik
dt( VWP + = E) < —d| AW = VWP = S VU
&
+2 (U1 + V1) + coe (3.6)

Next we consider the derivative of Es:

dE,

L /{Bu(u*+U,v*+V)(u§‘+Ut)+Bv(u*+U,v*+V)(vf+Vt)
Q

—By(u*, v )u; — By(u*,v")v; — By (u*, v )u;U — By (u*, v*)o;U
v )Uy — Byyo(u®, 0" )u;V — By (u*, v")v;V — B, (u”, U*)Vt}dx

- B (
= / { (Bu(u* + U; v* V) - Bu(U*a U*) - Buu<U*a U*)U - Buv(u*,v*)v>uf
Q
+<Bu(u* + U, UMES V) - Bv(u*a U*) - Buv(“’*?v*)U - va(u*,’l}*)v>’0:

+(Bulw + U0 +V) = Buw',0") U + (blu” + U 0" + V) - b(u*,v*»vt}dx

< BTRQUI 4 IVIP) + (" + U0t + V) = b, %), AZ) — dok [TV
LT+ V) + VU] + IVVIH@IVU) + [9W])
ks (M (U] + [VI) + VOV + 2k (ks + ) U] + [VIP)

< (b + U + V) — b, v*), AZ) — d2k2 Dk Gy
cellU VI + IO+ [T, (3.7
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with some positive constant c¢;. Similarly we have

1
thuvzw = —di||AZ)? (b + U, v" + V) = b(u",v), AZ)

——||VZ||2 + (V(dyN2* = 2),V Z)
1
< —dy||DZ)? - ( (u*+ U 0"+ V) —=bu",v"), AZ)
— V2] + e, (3.8)
2e
where cg := M? /2. Combining two inequalities (3.7) and (3.8), we obtain

d2 ko

d 1 2 1 2 1 2 2
| Z Z < _ _
dt<2uvzu +€E2> < —diaZ - vz - 22 vy

C
+;7(HUH2 HIVIE+ VUL + [IVWV?) + cse. (3.9)

Combine (3.6) and (3.9). If v > max{4cy,4c;/(d1k1)}, then we obtain

d

1
& (3192 + 25+ Zywwie + 25,

lelﬁ

1
< | AW|]P — dal| AZ|* - EHVWH2 — 5 IV2I° = = —=IIVUI?

d2 ko

YCs + ¢7
22y + 1

(VI -+ IVIP) + (ree + o). (3.10)
The assumption (A) implies

noz 2o

Bz IO - kIONVE+ 2V - (%45 e+ 2

Taking v so large as
4k3 kg 407
> S48 4
V=2 max{ /ﬁ (2 + kQ) y *C7, dlkl},

VEL + By > eo([UII* + IV]]%),

we have

where



Thus, (3.10) and the above inequality mean

d 1 2 ]' Y 2 Y —ciot
vydiky

vl 2
o)

1
< - (vd3||AW||2 +diAZIP+ LIV + oIV 2] +

daks

+2€

||vv||2> e 4 (g + cg)ee o

for c19 := (yc5 + ¢7)/co. Finally, we obtain the first and second inequalities of (1.13).

LEMMA 3.1. Let X and & be constants. If a C*—function X (t) satisfies
X'(t) < ME=X)
for 0 <t <T and X(0) <&, then X(t) <& for0 <t <T.

This lemma can be easily checked. So, the proof is omitted.
We will show the inequality for Z = z — b(u*,v*) in (1.13). By (3.1), we have

1d 9 ks 1
—— —dy||VZ|* 4+ = Z| - = Z|* + M| Z
S IZI < =V ZIP+ QU+ IVIDIZ) - 1212 + M) 2]
k3 1
< —dl[VZIP+ U+ IVIF) + Mie - 2]
1
< (K + MP)e - |2
€
By Lemma 3.1,

1ZI1* < 4(2k5e] + MY)e”.

The inequality for W = w —a(u*) in (1.13) can be proved similarly. This completes the

proof of Theorem 2.1.

REMARK 3.2. It is difficult to estimate the terms AW and AZ in the first
and second equations of (3.1). To overcome this difficulty, we have introduced the
functionals E)(t) and Es(t) instead of ||U]|? and ||[V||?>. For example, we have chosen

E;(t) in order that (a(u* + U) — a(u*), AW) in (3.4) cancels out that of (3.5).

We prepare the following lemma for the proof of Theorem 2.3.

LEMMA 3.3. Let A(t;€), p(t; €) be non-negative continuous functions in t and satisfy

/OT/\(t; €)dt < N, /OT p(t;e)dt < p(e)

12



where X is independent of €. Assume a non-negative C'—function X (t;¢) and a non-
negative continuous function Y (t;€) satisfy

Xy < =Y+ At;6) X + plt;e)

for 0 <t <T. Then,

X(t;e) < {X(0;¢) +p(e)}e, /o Y (s;€)ds < {X(0;¢) +p(e)}e (3.11)

for0 <t <T.

Proof. Since
d ot (o
% <X€ fO )\(T,e)d‘f‘) < (—Y+p)e fo A(T,e)dﬂ'7
we have

t t
X(t; 6) + / Y(S; €)€f5 MT9dT g < AXV(()7 e)efo A(Tse)dr + / p(s; 6)6f5 Am9)dr .
0 0

We can easily check (3.11). 0

Proof of Theorem 2.3. Owing to Lemma 3.3, it follows from the first and second
inequalities of (1.13) and (3.10) that

T
/ (A2 + [|AZ]2)dt < eqe.
0

By (3.1), we have

1d

57 IVUIP < =AU+ AW AU] + k(U1 + IVIDIAT]

d 1
< —SIAU|P + T AW+ KU+ VD

Lemma 3.3 shows us that these inequalities and (1.13) imply

T
/ [AU|Pdt < cise. (3.12)
0
It is similarly seen that
T
/ [AV|PdE < epge. (3.13)
0

13



Multiplying the first equation of (3.1) by —a'(u*)AU and integrating over €2 yield

th/ IVU|*a( dx——/ IVU|?a" ( dm—l—/Uta”(u*)VU-Vu*dx
< _d, / (AU (u*)dx — (AW, d () AU) + kska (1U] + [VIDIAU]-
Q
Since

[U| < di|| AU + [[AW ]| + ko (1T + V1],
the above inequality implies

/ dik o 1
57 / VUPd (u)de < == AU~ (AW.d'(u)AU) + L[| AW

+e([U+ VI + (IVU]?). (3.14)
Similarly, operating A to the third equation of (3.1), multiplying it by AW, and inte-

grating over {2, we get

thHAWHQ = —d3||VAW||2+d3/ AW = AWdS+(A(d3Aw*—w;),AW)

Fo(Aau + U) — a(u’)), AW) — | A (3.15)

€

LEMMA 3.4. Assume (2.3). Then, there exists a positive constant ¢4 independent
of € and (u,v,w, z) such that

d 1
ds| [ AW —-AWdS| < fuvawnu4—€\|AW\|2+014(61/2+6), (3.16)

T

o0 n
d 1

%AZdS' < f”VAZHz—i-EHAZHZ—FCM(Glﬂ—i—G). (3.17)

dy AV

o

Proof. The equations (1.7) and (1.8) imply

ﬁAw =0 on 01,
on
and hence
0 0 .
%AW = —%ACL(U ) on 89
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Then,

AWQAWdS' < HQAW | AW || 2200
99 on on £2(69)
< M| AW 1200
< asl| AW gz
< as (IVAW2AW]Y2 + [aW])
which is reduced to (3.16). Similarly, (3.17) can be checked. O

Set
I = Aa(u* +U) — a(u”)) — d'(u*)AU.
It follows from the chain rule that
L = d'(u+U)(|Vu* + VU] = |Vu*|?) + (" (u* + U) — a’(u*))|Vu*|?
+(d' (w4 U) —d(u)Adu* + (' (v +U) — d'(u*))AU.
Then, we have

(L, AW)| < er([U] + (IVUIDIAW || + ex [ VU [ [ AW |
+017HU||L4(Q)HAUH ||AW||L4(Q) (318)

The assumption N < 4 ensures the inclusion H'(Q) C L*(Q) and the existence of a
positive constant cig such that

Ul < cs(IVUI + U, (VUL < cas(|AU] + 1U]))-

Here we also used an elliptic estimate for U under the boundary conditions (1.3) and
(1.8). There exists a positive constant c¢i9 such that

|| VULl AWT < 2erecis(IAU|? + [T AW

dik 1
< BLIAUI + AP + ol U]
+epl|AU P AW,
Ul |AUN [[AW ||lpa@) < ercig(IVU | + IUDIAU([VAW | 4 | AW]])
dse c
< %HVAWH2 + %(HUH2 +[IVUIP) AU

+ew(|UN1* + [VUIP) + crl|AU [P AW

Using the above inequalities, we can estimate (I;, AW) as follows:

dse 1 di k
(L AW)| < SEIVAW]? + ZIAW | + ZAUIP + (et + cw)(UIP + [VU]?)
+C—:’IIAU||2 (1T + VU1 + 2¢[| AW %) + ero]| U (3.19)

15



Combining (3.15), (3.16), and (3.19) yields

d 1
< —SIVAWIE = AW + cia(e + ) + Mo AW |
d1k1

AW
S hawp

46%7 + C19

1 / *
1 AU + —(d' () AU, AW) + (U1* + IV U®)

C
E—QIIAUII (VI + 1901 + 248 Ly (3.20)

The inequalities (3.14) and (3.20) imply that

1
o (-/ VU (w)dz + ||AW||2>
<

dik 1
—— AU - & FIVAWI? = AW + cua(€ + ¢) + 203

c13 + 4, + crg
+ L WUz +IvUliz+ v

C C
+Z IAUIE (IU]° + IVUI? + 26| AW|?) + =20 ] (3.:21)
Recall that
1 k
- / VU () + AW > VU + AW
Q

Fix an arbitrary positive number e5. Taking (1.13) into account, we can derive from
(3.21)

2/ 2
s (- [ wurata >da:+||AW||)
dlkl

<

1
— 1AV - HVAWH2 = g IAWIP + el + e | AU

k
b (1 + EHAUH?) (Brvore + jawe). (3.22)

if 0 < e < €. Since (3.12) guarantees that the assumptions of Lemma 3.3 hold true
with

1
Pt = 2ew(e + AU, Atze) = 2en (1+ HAU[?).
we can apply Lemma 3.3 to (3.22) and obtain

T T
VU2 < cné?, / AU |2dt < cné™2, / IVAW|2dt < e (3.23)
0 0

16



for 0 < e < €.
Next we will show the inequality for ||[VV]|?. Multiplying the second equation of
(3.1) by —b,(u*,v*)AV and integrating over 2 yield

dyk 1
m/ww by(u*, v*)dr < —ﬂ“Avn? (AZ,bv(u*,v*)AV)+Z||AZ||2

+en([UI7 + VI + [VV]). (3.24)

Let us operate A to the last equation of (3.1), multiply it by AZ, and integrate over
Q:

2dt||AZ||2 - —d4||VAZ||2+d4/ £ AZdS+(A(d4Az*—z;‘),AZ)

1 1
+=(AB(u 4+ U v* + V) = b(u*,v")), AZ) — EHAZH?. (3.25)

€
Setting
I .= A(b(u* + U, v* + V) = b(u",v")) — by(u*, v*)AV,
we can see, in the similar manner to the argument to obtain (3.18), that
(T2, AZ)] < es(IU|+ VU + VI + IVVIDIAZ]
a3 (VU ey + IVV 3y ) 18211 + x| AU | AZ]
+eos (Ul zae) + IV IIi@) 1AV IIAZ ] ig)
As in deriving (3.19), the above inequality is reduced to

dye dok
(I, AZ)] < —F|IVAZ|P + |IAZH2 “lIAVIE + eull AU

e (U] + ||w||2 + ||V||2 +IIVVIP)
+ZAVIP (WO + VUL + [VIP + [9V]7)
e (JAUIP + [ AVIPYIAZIP + canl [T + [VIY).  (3.26)
Combining (3.24), (3.25), (3.26) and (3.17), we have
1d 2 * )k 2
o <-/ OV Pb (") + | AZ) )
< dQ"”nAvu? “ITAZI ~ CIAZIP + el + )+ 2M3e
2 au]? + L (IU1P + IVU12 + V]2 + [V V)
%HAVH (1P + 1012 + V]2 + 9V )
+ 2 (JAUIP + 1AVIP) 1827 + 22 (U] + V). (3.27)
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Hence, we can obtain
T T
[TV < cppe?, / IAV|2dt < cpse™2, / IVAZ|2dt < csse?  (3.28)
0 0

for 0 < € < ¢, using (1.13), (3.13), (3.23) and Lemma 3.3.
Due to (3.5),

1d
2 dt

ks
€

1 3/2 2
< = (ca6e 2 vw| )

IvVwW* <

1
AL+ INUINIVWI = S IV + coe

where 0 < € < ¢g. Lemma 3.1 and the above inequality imply the third inequality of
(1.14). The fourth inequality of (1.14) can be also seen similarly.
Hereafter we will prove the remaining four inequalities of (1.14) for 0 < € < ¢,. Since

%(dlﬁU +AW)=0 on 0

by (3.1), we have
1d

SZIAVR < | VAUIR + VAW [AU]

HIV (" + U™+ V) = fu”,07)] [VAU]
d 1
< —SIVAUP + [ VAW + ey,
1
Integrating the above in ¢ € [0,7] and using (3.23) yield the fifth inequality of (1.14).
Similarly we can show the sixth inequality of (1.14).
Consider the estimates of |AW|| and ||AZ||. By (3.20), (3.25), (3.17) and (3.26),

we have

1d d c &

STIAWIE < —Z VAW + el + ZJAUIE + 22 AU AW,
1d d4 C

§£HAZ\I2 < —;HVAZH2 + cooe'? + ?(HAUH2 + |AV?)

C
Jr%(IIAUH2 +HlAVIHIAZ]®

The last two inequalities of (1.14) follow from the above inequalities, (3.23), (3.28) and
Lemma 3.3. 0
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