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• Let R be a (commutative) Noetherian ring,

I ⊂ R an ideal of R, and M a R-module. The

local cohomology modules of M supported

on I are defined as:

Hr
I(M) = Rr(ΓI(M))

where ΓI(M) =
⋃

n≥0(0 :In M).

- It may be seen that:

Hr
I(M) ' ind.lim Extr

R(R/In, M) '

Hr(C(a1, . . . , at;M))

where C(a1, . . . , at;M) denotes de Čech com-

plex of M with respect to a (any) system of

generators a1, . . . , at of I, being

C(a1, . . . , at;M)r =
⊕

i1<···<ir

Mai1
···air
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- As we know, it is in general very difficult to

determine the structure (vanishing or non-

vanishing, support, injective dimension...) of

the local cohomology modules as R-modules.

This is mainly due to the fact that they are,

in general, not finitely generated.

- In this sense, finiteness conditions on lo-

cal cohomology modules have been always

considered to be important in order to get

enough information about their structure.

Let us mention the following result proved

some years ago:

3



Theorem (1993)

Let R be a regular ring containing a field and

I ⊂ R an ideal of R. Let Hr
I(R) be the r-th

local cohomology module of R supported on

I. Then the following hold:

i) H
j
m(Hr

I(R)) is injective for any maximal

ideal m of R.

ii) inj.dim R(Hr
I(R)) ≤ dimR Hr

I(R).

iii) The set of associated primes of Hr
I(R) is

finite.

iv) The Bass numbers of Hr
I(R) are finite.
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The proof of the theorem depends on the

characteristic of the field, and was obtained

by:

• C. Huneke and R.Y. Sharp if the field

is of positive characteristic (by using the

Frobenius).

• G. Lyubeznik if the field is of characteris-

tic zero (by using the theory D-modules).

When R is a polynomial ring or a formal

power series ring over a field of character-

istic zero, the local cohomology modules of

R have a D-module structure, where D is the

ring of differential operators. In fact, they

are holonomic as D-modules.

5



The purpose of this talk is to show how to

use some aspects of the theory of D-modules

to obtain a better understanding of the lo-

cal cohomolgy modules Hr
I(R), particularly

in the case when I is the definition ideal of

an arrangement of linear varieties.

The plan of the talk is the following:

1.- The Weyl algebra

2.- Holonomic D-modules

3.- The characteristic variety

4.- The characteristic cycle

5.- Arrangements of linear varieties

6.- The Mayer-Vietoris spectral sequence

7.- The Betti numbers of the complement

8.- Extension problems

9.- Final comments: Monomial ideals
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1.- The Weyl algebra

• Let k be a field of char(k) = 0.

• R = k[x1, . . . , xn].

• The Weyl algebra is the R-algebra

An(k) = R < ∂1, . . . , ∂n >⊂ Endk(R)

generated by the partial derivatives ∂i = d
dxi

with the relations given by:

∂i∂j = ∂j∂i.

∂ir − r∂i = dr
dxi

, where r ∈ R.

FACT: An(k) is left (right) Noetherian.

We will always consider left An(k)-modules.
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- For any commutative k-algebra R one may

define the ring of differential operators of R

inductively as follows:

• For P, Q ∈ Endk(R) (k-linear operators) de-

note by

[P, Q] = P ·Q−Q·P

the commutator.

- We say that a k-linear operator P has order

0 if [a, P ] = 0 for any a ∈ R.

- And that P has order n if it does not have

order less than n, and [a, P ] has order less

than n for any a ∈ R.

• The ring of differential operators

D = D(R)

is the set of all k-linear operators of finite

order.
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FACT: The differential operators of order 0

are the elements of R. Those of order ≤ 1

correspond to the elements of Derk(R) + R.

- The ring of differential operators is a very

important but difficult object, and there are

many results and conjectures about it.

FACT: If R is regular, the ring of differential

operators is generated by Derk(R).

- This is not true in general: R = k[t2, t3].

Nakai’s conjecture: R is regular if and only if

the ring of differential operators is generated

by Derk(R).

FACT: For R = k[x1, . . . , xn] the ring of dif-

ferential operators is the Weyl algebra:

An(k) ' D
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What is an (algebraic) D-module?

- Let us consider the following example:

Let P1, . . . , Pn be a family of differential op-

erators in An(k) and consider the system of

differential equations

P1(f) = · · · = Pm(f) = 0

We may then consider the D-module defined

as

An(k)/
m∑
1

An(k)Pi

FACT: The vector space of polynomial solu-

tions of the system is isomorphic to

HomAn(k)(M, R)

More in general, for any pair of D-modules

M, S, one may define the solution space of

M in S as HomAn(k)(M, S)...
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2.- Holonomic D-modules

- The Weyl algebra has an increasing filtra-

tion

{Σv}v≥0

given by the degree (the Bernstein filtration)

such that

grΣ(D) =
⊕

v≥−1

Σv+1/Σv =

K[x1, . . . , xn; y1, . . . , yn] = R[y1, . . . , yn]

where

yi = ∂̄i ∈
Σ1

Σ0

(and Σ−1 = 0).

Note that this is a commutative ring of di-

mension 2n...
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- For any finitely generated D-module M there

exists a good filtration, that is, there is an

increasing sequence of finitely generated R-

submodules

{Γk}k≥0

satisfying

i)
⋃

Γk = M ,

ii) ΣvΓk ⊆ Γv+k

for all k, v ≥ 0, and such that

grΓ(M) =
⊕

k≥−1

Γk+1/Γk

is a finitely generated grΣ(D)-module (where

Γ−1 = 0).

Note that the dimension of this module is

≤ 2n...

12



FACT (Bernstein inequality): The dimension

of the associated graded module grΓ(M) is at

least n. So

n ≤ dimgrΣ(D)(grΓ(M)) ≤ 2n

Definition An finitely generated D-module is

said to be holonomic if

dimgrΣ(D)(grΓ(M)) = n

The definition is independent of the choosen

good filtration.

Thus, in some sense, holonomic modules are

the ”smallest” ones in the category of D-

modules.

- The category of holonomic D-modules is

an abelian full subcategory of the category

of D-modules with very good properties. In

particular, they are of finite length.
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FACT: R itself is an holonomic D-module.

FACT: For any f ∈ R, the localization Rf is

also an holonomic D-module.

Now, from the construction by means of the

Čech complex of the local cohomolgy mod-

ules and the fact that the category of holo-

nomic D-modules is an abelian full subcate-

gory we have that:

The local cohomology modules Hr
I(R) are

holonomic D-modules too.

This is the fact on the basis of the proof by

G. Lyubeznik of the finiteness results cited

at the beginning of this talk. Observe that

we have passed from a non-finitely generated

structure to a finitely generated one (over a

non commutative ring...)
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3.- The characteristic variety

Let M be a finitely generated D-module.

Given a good filtration {Γk}k≥0 of M we may

consider the following objects:

• Characteristic Ideal:

J(M) =
√

AnngrΣ(D)(grΓ(M)).

• Characteristic Variety :

C(M) = V (J(M)) ⊆ Spec (grΣ(D)).

FACT: The characteristic ideal is indepen-

dent of the chosen good filtration.

Observe that, by the Bernstein inequality, the

dimension of the characteristic variety is less

or equal than n, and that for an holonomic

module the dimension is exactly n.

15



- The characteristic variety of a finitely gen-

erated D-module M provides a link with its

structure as R-module. Namely, if

π : SpecR[y1, . . . , yn] → SpecR

is the natural projection, then

π(C(M)) = Supp (M)

This gives a chance to determine the support

of M as R-modue if we have an adequate

description of its characteristic variety.

- For instance, if M = Hr
I(R) is a local co-

homolgy module. In this case, it is also a

regular holonomic module: This means that

the annihilator ideal of grΓ(M) is itself radi-

cal.

Characteristic varieties of regular holonomic

modules have special geometric properties.
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4.- The characteristic cycle

In general, it is rather difficult to compute

characteristic varieties. But the following con-

struction helps.

• Let M be a finitely generated D-module.

The characteristic variety of M is the union

of its irreducible components

C(M) =
⋃
α

Vα

- One can then attach to each irreducible

component Vα a certain multiplicity mα in

the following way:

mα = egrΣ(D)Pα
(grΓ(M)Pα)

where Pα is the definition ideal of Vα.
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Definition The characteristic cycle of M is

defined as

CC(M) =
∑
α

mαVα

FACT: The characteristic cycle is additive

with respect to exact sequences of finitely

generated D-modules.

This provides one of the basic tools to com-

pute characteristic cycles, if we are able to

compute them in some basic cases.

For instance, there is a general, but not so

easy, method to compute the characteristic

cycle of the modules Rf , f ∈ R (J. Briançon,

P. Maisonobe and M. Merle, 1994).

FACT: (J. Àlvarez-Montaner, 2004) The mul-

tiplicities of the characteristic cycle of Hr
I(R)

are invariants of R/I.
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Example

• Let X ⊂ An
k be a linear variety of codimen-

sion r defined by the prime ideal p.

- X could be any of the coordinate hyper-

planes: then p = (xi) for some i.

- Or X could be any of their intersections:

then p = (xi1, . . . , xir) for some i1, . . . , ir.

FACT: The characteristic variety of Hr
p(R) is

of the form

C(Hr
p(R)) = T ∗XAn

k

the conormal bundle of An
k with respect to

X. It is an irreducible variety and

CC(Hr
p(R)) = T ∗XAn

k

Moreover, π(T ∗XAn
k) = X.
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5.- Arrangements of linear varieties

• Assume now that k is any field.

• Let {Xi, i = 1, . . . , m} be a finite collection

of linear varieties in the affine space An
k.

• For each i, let pi be the defining prime ideal

of Xi.

Their union X =
⋃m

i=1 Xi is said to be an

Definition Arrangement of linear varieties.

It is an affine variety defined by the ideal

I = p1 ∩ · · · ∩ pm

- Observe that all the linear varieties contain

the origin (central arrangement) if and only

if I is a square free monomial ideal.
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Now, we want to apply the theory explained

before in order to study the local cohomology

modules Hr
I(R).

Our purpose is twofold:

1.- To compute and describe explicitly their

characteristic cycles.

2.- To give an interpretation of the multiplic-

ities in terms of...

This will be possible thanks to the existence

of a spectral sequence that will provide a very

good filtration of the local cohomology mod-

ules.

By means of this filtration and the formal

properties of the characteristic cycle we shall

be able to reach our target.
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A good way to organize part of the infor-

mation contained in the arrangement is by

means of a poset:

- The arrangement X defines in a natural way

a partially ordered set P (X) in the following

way:

Consider all possible intersections of the lin-

ear varieties Xi, i = 1, . . . , m:

Xi1 ∩ · · · ∩Xik

for 1 ≤ i1 ≤ · · · ≤ ik ≤ m, with the order given

by the inclusion.

- We may also realize P (X) as the poset as-

sociated to the family of ideals

pi1 + · · ·+ pik

for 1 ≤ i1 ≤ · · · ≤ ik ≤ m, ordered by reverse

inclusion.
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6.- The Mayer-Vietoris spectral sequence

The following construction follows closely a

similar one by A. Björner and T. Ekedahl

(1997) to compute the l-adic cohomology of

the complement of an arrangement of linear

varieties over a finite field.

• To any poset (P,≤), abelian category C and

covariant functor F : P → C one may attach

a complex: the Roos complex of F

Roos∗(F )

that allows to compute the ith left-derived

functors of the direct limit functor of F eval-

uated at P . Namely,

Hi(Roos∗(F )) = ind.lim(i)
P (F (P ))
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Now, let P (X) the poset attached to the ar-

rangement of linear varieties X.

• For any p ∈ P (X) denote by Ip its definition

ideal, and by h(p) the height of Ip.

- Then, for any R-module M and i ≥ 0 we

may consider the following functor over the

natural poset P (X):

Hi
[∗](M) : P −→ R-mod

p 7→ Hi
Ip
(M)

Let us consider the following easy example:

• X = X1 ∪ X2, where X1 and X2 are the

coordinate axis of the affine plane A2
k. Then,

IX = (x·y), IX1
= (x)

IX2
= (y), IX1∩X2

= (x, y)
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For any R-module M , the inclusions

(x) ↪→ (x, y), (y) ↪→ (x, y)

induce natural morphisms

f : Hi
(x,y)(M) → Hi

(x)(M)

f : Hi
(x,y)(M) → Hi

(y)(M)

In this case, the Roos complex for the functor

F = Hi
[∗](M) is

d1 : K1(F ) → K0(F )

where

K1(F ) = Hi
(x,y)(M)⊕Hi

(x,y)(M)

K0(F ) = Hi
(x)(M)⊕Hi

(x,y)(M)⊕Hi
(y)(M)

and the differential

d1 : K1(F ) → K0(F )

is given by

d1 = (f − Id)⊕ (g − Id)
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The following fact is crucial for our purposes:

FACT: Let E be an injective R-module. Then,

the augmented Roos complex

Roos∗(H0
[∗](E)) → H0

I (E) → 0

is exact.

• Let us consider now an injective resolution

of R in R-mod:

0 → R → E∗

- One then gets a double complex:

Roos−i(H
0
[∗](E

j))

for i ≤ 0, j ≥ 0, which is a second quadrant

complex with only a finite number of non-

zero columns.
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- So it gives a spectral sequence that, be-

cause of the lemma, converges to H∗
I (R):

E
−i,j
1 = Roosi(H

j
[∗](R)) ⇒ H

j−i
I (R)

i, j ≥ 0, that we call

the Mayer-Vietoris spectral sequence.

- Note that, since the differential d1 is that

of the Roos complex, we have by the above

lemma that the second term of this spectral

sequence is

E
−i,j
2 = ind.lim(i)

P H
j
[∗](R)

Remark: If chark = 0 then the Mayer-Vietoris

spectral sequence can be regarded as a spec-

tral sequence in the category of D-modules.
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We may now state our main result (J. Àlvarez

Montaner, R. Garćıa López and S. Z. A.,

2003).

Theorem

(1) There is an isomorphism of R-modules

ind.lim(i)
P H

j
[∗](R) '

⊕
h(p)=j

(Hj
Ip
(R))⊕bi,p

where bi,p = dimk(H̃i−1(K(> p); k)

(and we agree that H̃−1(K(> p); k) = k and

the reduced homology of the empty simplicial

complex is k in degree −1 and 0 otherwise).

(2) The Mayer-Vietoris spectral sequence de-

generates at the E2-term.
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As a consequence of the degeneration of the

Mayer-Vietoris spectral sequence at the E2-

term we obtain the following useful conse-

quence:

Corollary

For any r ≥ 0 there exists a filtration of the

local cohomology module Hr
I(R):

{F r
j }r≤j≤n

such that

F r
j /F r

j−1 '
⊕

h(p)=j

(Hj
Ip
(R))⊕mr,p

where mr,p = dimkH̃h(p)−r−1(K(> p); k).
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Remark: The simple existence of a Mayer-

Vietoirs spectral sequence may be stated more

in general (G. Lyubeznik, 2005).

This is true for any commutative ring A,

family of ideals I1, . . . , In, and A-module M ,

by following a similar construction as above.

Nevertheless, even applied to our case, the

spectral sequence obtained by G. Lyubeznik

is not exactly the same as ours.

Question (G. Lyubeznik) Does the general

Mayer-Vietoris spectral sequence always de-

generate? Does it degenerate at E2 at least

when A is regular and M = A?
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7.- The Betti numbers of the complement

• Assume chark = 0.

- Taking into account the additivity of the

characteristic cycle, the value of the charac-

teristic cycle of the local cohomology mod-

ules supported at the definition ideal of a lin-

ear variety, and the above filtration we may

obtain the characteristic cycle of the local

cohomolgy modules Hr
I(R).

Corollary

CC(Hr
I(R)) =

∑
p∈P (X)

mr,p T ∗Xp
An

k

where mr,p = dimk(H̃h(p)−r−1(K(> p); k).

In this way we obtain a first combinatorial

description of the multiplicities.
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• Now, assume that k = R.

- M. Goreski and R. MacPherson (1988) gave

the following formula for the homology of the

complement of X in An
k.

Theorem

H̃i(An
R −X;Z) '⊕

p∈P (X)

Hh(p)−i−1(K(≥ p), K(> p);Z),

where H̃i(·;Z) denotes the ith reduced singu-

lar homology with integer coefficients Z and

Hj(·, ·;Z) the jth relative simplicial cohomol-

ogy with coefficients Z.

(In fact, the extension of this formula to the

l-adic cohomology was the motivation of the

work by A. Björner and T. Ekedahl.)
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- Now, we may compare the terms that ap-

pear in the formula of Goresky and MacPher-

son and our terms in the formula for the char-

acteristic cycle.

As a consequence, for k = R, we obtain an

expression for the Betti numbers of the com-

plement of X in terms of the multiplicities of

the local cohomology modules Hr
I(R), which

is a purely algebraic interpretation.

Corollary

dimQ H̃i(An
R −X, Q) =

∑
p∈P (X)

mi+1,p

And regarding a complex arrangement in An
C

as a real arrangement in A2n
R , the formula in

this case becomes

dimQ H̃i(An
C −X, Q) =

∑
p∈P (X)

mi+1−h(p),p
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8.- Extension problems

• Let k be any field.

For a given local cohomology module Hr
I(R)

we may consider the exact sequences

0 → Fj−1 → Fj → Fj/Fj−1 → 0

for r ≤ j ≤ n.

In general, these exact sequences are not

split, as the following easy example shows:

• Let R = k[x, y] and I = (x · y).

Let us denote by

- I1 = (x), I2 = (y) and m = (x, y).
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It’s not hard to see that in the case of two

ideals, the Mayer-Vietoris spectral sequence

is given by the usual Mayer-Vietoris long ex-

act sequence.

• For H1
I (R) we then have

- F1 = H1
I1

(R)⊕H1
I2

(R),

- F2 = H1
I (R)

and the corresponding exact sequence is

0 → H1
I1

(R)⊕H1
I2

(R) → H1
I (R) → H2

m(R) → 0

which is not split because the maximal ideal

m is not an associated prime ideal of H1
I (R).

Problem Determine these extensions.
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9.- Final comments: Monomial ideals

- To compute the local cohomology supported

at a monomial ideal we may assume that the

ideal is reduced, that is, a square free mono-

mial ideal.

- A square free monomial ideal defines a cen-

tral arrangement of linear varieties, and so

we may apply all the above results.

But the local cohomolgy modules supported

on monomial ideals have been studied from

other points of view by several authors. For

instance,

- J. Àlvarez Montaner (computational, 2000,

2004),

- M. Mustaţă (topological, 2000),

- K. Yanagawa (categorical, 2001)

...
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The following fact makes the difference be-

tween the monomial case and the general

case:

• Let I ⊂ R be a square free monomial ideal.

FACT: The local cohomology modules Hr
I(R)

have a natural Zn-graduation coming from

the one in R given by

deg(xi) = εi

where εi denotes the canonical basis of Zn.

Now, if char(k) = 0 we have two structures

for the local cohomology modules Hr
I(R):

- As D-modules.

- As Zn-graded R-modules.
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In fact, both structures can be compared in

the following way:

• Set Ω = {−1,0}n.

• Let ∗P the set homogeneous prime ideals

of R. They are of the form

p = (xi1, . . . , xik)

for 1 ≤ i1 ≤ · · · ≤ ik ≤ n.

- So there there is a bijection

Ω →∗ P : α 7→ pα = 〈xik | αik = −1〉

Proposition

mr,pα = dimk Hr
I(R)α

for all r ≥ 0 and α ∈ Ω.
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On the other hand, the graded Betti numbers

in the minimal free resolution of the Alexan-

der dual I∨ of I may be completely described

by means of the graded structure of the local

cohomology modules Hr
I(R).

FACT: By M. Mustaţă (2000) one has that

βi,−α(I∨) = dimk H
|α|−i
I (R)α

for α ∈ Ω, and all the other graded Betti

numbers are zero.

As a consequence we get:

Corollary

Let I be a square free monomial ideal. Then,

for any α ∈ Ω we have

βi,−α(I∨) = m|α|−i,pα

39



- Let us consider again the example

I = (x·y) ⊂ k[x, y]

and use the same notation as before. From

the exact sequence

0 → H1
I1

(R)⊕H1
I2

(R) → H1
I (R) → H2

m(R) → 0

we have that the characteristic cycle is

CC(H1
I (R)) = T ∗X1

A2
k + T ∗X2

A2
k + T ∗(0,0)A

2
k

- On the other hand, the Alexander dual of I

is I∨ = (x, y) that has the following minimal

free Z2-graded resolution:

0 → R(−1,−1) → R(−1,0)⊕R(0,−1) → 0

and the following equalities hold

β0,(1,0) = 1 = m1,I1

β0,(0,1) = 1 = m1,I2

β1,(1,1) = 1 = m1,m
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Thus if

• k = R or k = C, I is a square free mono-

mial ideal, and X is the arrangement of linear

varieties defined by I in An
k,

there is an ”equivalence” between the sets of

numbers given by

- the multiplicities of the local cohomology

modules Hr
I(R) as D-modules;

- the (algebraic) graded Betti numbers of

Alexander dual of I;

- the (topological) Betti numbers of the

complement of X.
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Also, in the case of a square free monomial

ideal I it is possible to do something more.

For instance,

• To solve (for any field k) the extension

problems given by the filtration of the lo-

cal cohomology modules Hr
I(R) (by using the

category of straight modules introduced by

K. Yanagawa);

• If the characteristic of k is 0, to describe the

smallest full abelian subcategory of the cate-

gory of the category of D-modules that con-

tains the local cohomology modules Hr
I(I)

(that it turns out to be equivalent to the

category straight-modules);

...
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