
Buchsbaum rings with minimal multiplicity
by Ken-ichi Yoshida

Nagoya University, Japan

The main part of this talk is a joint work with Shiro Goto at Meiji University
(see [8]). Also, some part is a joint work with Naoki Terai at Saga University (see
[15]).

1. Motivation

In 1967, Abhyankar [2] proved that for a homogeneous integral domain A over
an algebraically closed field k, the following inequality holds:

embdim(A) = dimk A1 ≤ e(A) + dim A− 1,

where e(A) (resp. embdim(A)) denotes the multiplicity (resp. embedding dimen-
sion) of A. In 1970, Sally [13] proved that the same inequality holds for any
Cohen–Macaulay local ring, and called the ring A which satisfies the equality a
Cohen–Macaulay local ring with maximal embedding dimension 1. In 1982, Goto
[5] pointed out that Sally’s result can be extended to the class of Buchsbaum local
rings. Namely, for any Buchsbaum local ring A, the following inequality holds:

embdim(A) ≤ e(A) + dim A− 1 + I(A),

where I(A) denotes the Buchsbaum invariant (I-invariant) of A. A Buchsbaum
local ring A which satisfies the equality is said to be a Buchsbaum local ring with
maximal embedding dimension. On the other hand, Goto [6] in 1983 proved that

e(A) ≥ 1 +
d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A))

and defined the notion of Buchsbaum local rings with minimal multiplicity.
Recently, Terai and the author [15] defined the notion of Buchsbaum rings with

minimal multiplicity with initial degree q ≥ 3 for Stanley–Reisner rings, and proved
that those rings have q-linear resolution. Their result indicates the existence of
Buchsbaum homogeneous k-algebras with minimal multiplicity of higher initial de-
gree.

The purpose of my first talk is to introduce the notion of Buchsbaum homo-
geneous k-algebra with minimal multiplicity with initial degree q ≥ 2 and
characterize those rings. Also, in my second talk, I will give several examples of
those k-algebras and applications to the theory of Stanley–Reisner rings.

2. Lower bound

Throughout this talk, let S = k[X1, . . . , Xn] be a homogeneous polynomial ring
with n variables over an infinite field k with deg Xi = 1. Let A = S/I = ⊕n≥0An

be a homogeneous k-algebra with dim A = d where I ⊆ (X1, . . . , Xn)2S. Put
m = (X1, . . . , Xn)A. Take a graded minimal free resolution over S:

0 →
⊕

j∈Z
S(−j)βp,j(A) ϕp−→ · · · ϕ2−→

⊕

j∈Z
S(−j)β1,j(A) ϕ1−→ S → A → 0.

1The ideal I is said to have minimal multiplicity if µA(I) = e(I) + dim A− lA(A/I).
9



Then the initial degree of A is defined by

indeg A = min{j ∈ Z : β1,j(A) 6= 0}.
Similarly, the (Castelnuovo–Mumford) regularity (see [3]) is defined by

reg A = max{j − i ∈ Z : βi,j(A) 6= 0}
= min{n ∈ Z : [H i

m(A)]j = 0 for all i + j > n}.
Then reg A ≥ indeg A − 1, and A has q-linear resolution if equality holds and
indeg A = q. Note that indeg A = 1 and reg A = 0 if A(= S) is a polynomial ring.

In what follows, let A = S/I be a homogeneous k-algebra with d := dim A ≥ 1,
c := codim A ≥ 1 and q := indeg A ≥ 2. Also, let x1, . . . , xd ∈ A1 be a linear system
of parameters of A and fix it. For an integer ` ≥ 1 we set

Q := (x1, . . . , xd)A, Σ(x`) :=
d∑

i=1

(x`
1, . . . , x̂

`
i , . . . , x

`
d) : x`

i + Q.

In particular, we write Σ(Q) = Σ(x) for simplicity.

The following result for Cohen–Macaulay rings is known (see, e.g., [3]).

Proposition 2.1. Suppose that A is Cohen–Macaulay. Then

(1) e(A) ≥ (
c+q−1
q−1

)
.

(2) a(A) = reg A− d ≥ q − d− 1.
(3) The following conditions are equivalent:

(a) e(A) =
(

c+q−1
q−1

)
.

(b) a(A) = q − d− 1.
(c) A has q-linear resolution.

When this is the case, A/Q ∼= k[Y1, . . . , Yc]/(Y1, . . . , Yc)
q, where k[Y1, . . . , Yc]

is a polynomial ring in c variables over k.

The main result in this section is the following theorem, which generalizes the
inequality in Proposition 2.1.

Theorem 2.2 (Lower bound on multiplicities for Buchsbaum rings). Sup-
pose that A is Buchsbaum. Then the following inequality holds:

e(A) ≥
(

c + q − 2

q − 2

)
+

d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A)).

Also, the following statement holds:

(1) Σ(Q) ⊆ mq−1 + Q.
(2) a(A) ≥ q − d− 2.
(3) [H i

m(A)]j = 0 (i < d, j ≤ q − 2− i).

Remark 2.3. (1) We can prove a similar inequality as in the above theorem for any
Buchsbaum local ring.

(2) Suppose that A is Buchsbaum. If indeg A = q > q′ ≥ 2, then

e(A) >

(
c + q′ − 2

q′ − 2

)
+

d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A)).

10



(3) Herrmann and Ikeda [11, Theorem 2.2] proved that e(A) ≥ (
c+q−2
q−2

)
for any

Buchsbaum local ring A = R/I where (R, n) is a regular local ring and I ⊆ nq.

We need the following two lemmas to prove the above theorem.

Lemma 2.4 (Hoa–Miyazaki [10]). Suppose that A is Buchsbaum. Then

reg A ≤ a(A) + d + 1.

Note that a(A) + d ≤ reg A by definition.

Lemma 2.5 (Goto [6, Theorem 4.1]). Suppose that A is Buchsbaum.

e(A) = e(Q) = lA(A/Σ(Q)) +
d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A)).

By virtue of the above theorem, we can define the notion of Buchsbaum homo-
geneous k-algebras with minimal multiplicity, which generalizes the notion defined
by Goto in [6].

Definition 2.6 (Buchsbaum rings with minimal multiplicity). Suppose that
A is Buchsbaum. The ring A is called a Buchsbaum ring with minimal multiplicity
of degree q if the equality holds:

e(A) =

(
c + q − 2

q − 2

)
+

d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A)).

We regard a polynomial ring as a Buchsbaum (Cohen–Macaulay) ring with minimal
multiplicity of degree 1.

3. Characterization

In what follows, we use same notation as in the previous section. This is the main
result in this talk.

Theorem 3.1 (Characterization of Buchsbaum rings with minimal multi-
plicity). Suppose that A is Buchsbaum. Then the following conditions are equivalent:

(1) A has minimal multiplicity of degree q, that is,

e(A) =

(
c + q − 2

q − 2

)
+

d−1∑
i=1

(
d− 1

i− 1

)
lA(H i

m(A)).

(2) a(A) = q − d− 2.
(3) H i

m(A) = [H i
m(A)]q−1−i (i < d) and [Hd

m(A)]n = 0 (n ≥ q − d− 1).
(4) A has q-linear resolution with

d−1∑
i=0

(
d

i

)
lA(H i

m(A)) =

(
reg A + c− 1

c− 1

)
.

(5) Σ(Q) = mq−1 + Q.
(6) Σ(Q) ⊇ mq−1, that is, [Σ(Q)]n = An (n ≥ q − 1).

When this is the case, we have Soc(Hd
m(A)) = [Hd

m(A)]q−d−2 and reg A = a(A) +
d + 1 = q − 1.
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In the proof of the above theorem, the following lemma plays an important role.

Lemma 3.2 (Eisenbud–Goto [3]). Suppose that A is Buchsbaum.

(1) A has q-linear resolution.
(2) H i

m(A) = [H i
m(A)]q−1−i (i < d) and [Hd

m(A)]n = 0 (n ≥ q − d).
(3) mq = Qmq−1.

Remark 3.3. (1) In [12], Kamoi and Vogel proved that the following inequality:

d−1∑
i=0

(
d

i

)
lA(H i

m(A)) ≤
(

reg A + c− 1

c− 1

)

provided A is a homogeneous Buchsbaum k-algebra.

(2) For a Buchsbaum k-algebra A, it has maximal embedding dimension if and only
if it has 2-linear resolution. Also, any Buchsbaum ring with minimal multiplicity
has 2-linear resolution; see [6].

(3) When q ≥ 2, if A is a Buchsbaum ring with minimal multiplicity, then it is not
Cohen–Macaulay.

(4) Suppose that A has minimal multiplicity of degree q. Let x ∈ A1 be a non-
zero-divisor with e(A) = e(A/aA). Then A/xA has q-linear resolution, and it has
minimal multiplicity if and only if Hd−1

m (A) = 0.

4. Examples

In this section, we give several examples of Buchsbaum homogeneous k-algebras
with minimal multiplicity of higher initial degree.

4.1. The case of depth A = 0. We first give examples of Buchsbaum homogeneous
k-algebras with minimal multiplicity with depth A = 0. has

Proposition 4.1. Under the same notation as in Theorem 3.1, if, in addition,
A/H0

m(A) is Cohen–Macaulay, then the following conditions are equivalent:

(1) A has minimal multiplicity of degree q, that is, e(A) =
(

c+q−2
q−2

)
.

(2) A has q-linear resolution and lA(H0
m(A)) =

(
c+q−2
q−1

)
.

(3) a(A) = q − d− 2.
(4) A/H0

m(A) has (q − 1)-linear resolution.

In particular, if S/J is a Cohen–Macaulay homogeneous k-algebra with (q − 1)-
linear resolution, then A = S/mJ is a Buchsbaum homogeneous k-algebra with
minimal multiplicity of degree q with lA(H0

m(A)) = µS(J).

Example 4.2. Let S = k[x, y, z, w] be a polynomial ring.

(1) If we set I = (x, y, z, w)(xw − yz, y2 − xz, z2 − xw) and A = S/I, then
A/H0

m(A) ∼= k[s3, s2t, st2, t3] is Cohen–Macaulay with 2-linear resolution.
Thus A is Buchsbaum with minimal multiplicity of degree 3. Also, we have:

H0
m(A) = k(−2), H1

m(A) = 0; e(A) = 3.

(2) If we set I = ((x, y, z, w)(xw−yz), z3−yw2, y3−x2z, xz2−y2w) and A = S/I,
then A is Buchsbaum with minimal multiplicity of degree 3 since H0

m(A) =
k(−2), H1

m(A) = k(−1) and e(A) = 4. But A/H0
m(A) ∼= k[s4, s3t, st3, t4] is

not Cohen–Macaulay.
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Example 4.3. Any homogeneous non-Cohen–Macaulay Buchsbaum k-algebra A
with e(A) ≤ 2 has minimal multiplicity whose degree is at most 3. Precisely speak-
ing, we have:

(1) Suppose that e(A) = 1. When depth A > 0, then A is a polynomial ring.
Otherwise, A has minimal multiplicity of degree 2.

(2) Suppose that e(A) = 2. When depth A > 0, A has minimal multiplicity of
degree 2 (see [4]). For example, A = k[x1, . . . , xd, y1, . . . , yd]/(x1, . . . , xd) ∩
(y1, . . . , yd).
When depth A = 0, A has minimal multiplicity of degree 2 or 3. For example,
A = k[x1, . . . , xd, y]/(x1y

2, . . . , xdy
2, y3).

4.2. The case of reduced rings. One can find many examples of Buchsbaum re-
duced k-algebras with minimal multiplicity in the class of Stanley–Reisner rings.
In fact, Terai and the author [15] gave another definition of Buchsbaum k-algebras
with minimal multiplicity for Stanley–Reisner rings and have characterized those
rings.

Let ∆ be a simplicial complex on the vertex set V = [n] := {1, . . . , n}, that is,
∆ is a collection of subsets of V such that (a) F ⊆ G, G ∈ ∆ =⇒ F ∈ ∆ and
(b) {i} ∈ ∆ for i ∈ V . The dimension of F ∈ ∆ (F is said to be a face of ∆) is
defined by #(F )− 1. Set dim ∆ = max{dim F : F ∈ ∆}. A complex is called pure
if all facets (maximal faces) have the same dimension. Put link∆{v} = {F ∈ ∆ :
F ∪ {v} ∈ ∆, v /∈ F}, the link of v in ∆.

If we put I∆ = (Xi1 · · ·Xip : 1 ≤ i1 < · · · < ip ≤ n, {i1, . . . , ip} /∈ ∆)S,
then k[∆] = S/I∆ is called the Stanley–Reisner ring of ∆ over k. The ring is a
homogeneous reduced k-algebra with d := dim k[∆] = dim ∆ + 1 and e(k[∆]) =
fd−1(∆) is equal to the number of facets F with dim F = d − 1. Note that k[∆]
is Buchsbaum if and only if ∆ is pure and k[link∆{v}] is a Cohen–Macaulay ring
(of dimension d − 1). Also, if A = k[∆] is Buchsbaum if and only if H i

m(A) =

[H i
m(A)]0(∼= H̃i−1(∆; k)) for all i < d.

In the class of Buchsbaum Stanley–Reisner rings, there exists a criterion for k[∆]
to have linear resolution in terms of h-vectors as follows:

Theorem 4.4. Suppose that A = k[∆] is Buchsbaum and 2 ≤ q ≤ d. Put h =
dimk Hq−1

m (A). Then the following conditions are equivalent:

(1) A has q-linear resolution.
(2) The h-vector h(∆) = (h0, h1, . . . , hq−1, hq, hq+1, . . . , hd) of ∆ is

(
1, c, · · · ,

(
c + q − 2

q − 1

)
, −

(
d
q

)
h,

(
d

q + 1

)
h, · · · , (−1)d−q+1

(
d
d

)
h

)
.

(3) The following equalities hold:

e(A) =
(

c + q − 1
q − 1

)
− h

(
d− 1
q − 1

)
and I(A) = h

(
d− 1
q − 1

)
.

When this is the case, H i
m(A) = 0 (i 6= q − 1, d) and the following inequalities hold:

0 ≤ h ≤ c(c + 1) · · · (c + q − 2)
d(d− 1) · · · (d− q + 2)

=: hc,d,q.
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From this point of view, one can regard a Buchsbaum simplicial complex with
minimal multiplicity as a Buchsbaum complex with linear resolution and “maximal
homology”.

Theorem 4.5 (Terai and Y- [15]). Suppose that A = k[∆] is Buchsbaum. Then

e(A) ≥ c + d

d

(
c + q − 2

q − 2

)

holds, and the following statements are equivalent:

(1) A has minimal multiplicity of initial degree q, that is, e(A) = c+d
d

(
c+q−2
q−2

)
.

(2) A has minimal multiplicity of degree q in our sense.
(3) A has q-linear resolution with lA(Hq−1

m (A)) = hc,d,q.
(4) k[link∆{v}] has (q − 1)-linear resolution for all v ∈ V .
(5) The h-vector of A can be written as in the shape of Theorem 4.4(2) and

h = hc,d,q.
(6) k[∆∗] has pure and almost linear resolution and a(k[∆∗]) = 0, where ∆∗ =

{F ∈ ∆ : V \ F /∈ ∆} denotes
the Alexander dual complex of ∆.

Example 4.6. Let us pick up examples of Buchsbaum complexes with minimal
multiplicity.

(1) ∆ is a finite disjoint union of (d−1)-simplexes if and only if k[∆] has minimal
multiplicity of degree 2.

(2) Let q, d be given integers with 2 ≤ q ≤ d. Put n = 2d − q + 2 and
f = 2(d− q + 1). Let ∆ be the Alexander dual of the boundary complex Γ
of a cyclic polytope C(n, f) with n vertices. Then k[∆] is a d-dimensional
Buchsbaum Stanley–Reisner ring with minimal multiplicity of degree q with
h = hc,d,q = 1.

(3) For a given integer n ≥ 3, there exists a 3-dimensional Buchsbaum complex
on [n] with minimal multipicity of degree 3 if and only if n ≡ 0, 2 (mod 3);
see Hanano’s examples in [9].

In general, the following question remains open when d ≥ 4.

Problem 4.7. Let c, d, q, h be integers with c ≥ 2, 2 ≤ q ≤ d and 0 ≤ h ≤ hc,d,q.
Construct (d − 1)-dimensional Buchsbaum complexes ∆ with q-linear resolution
such that codim k[∆] = c and dimk Hq−1

m (k[∆]) = h. See also [16].

4.3. The case of integral domains. We have no examples of Buchsbaum homo-

geneous integral domain over k = k with minimal multiplicity of degree q ≥ 2. The
following proposition (in the case of q = 2) immediately follows from Abhyankar’s
result mentioned as above.

Proposition 4.8. Let A be a Buchsbaum homogeneous k-algebra with minimal
multiplicity

of degree at most 2. Also, suppose that k = k and A is an integral domain. Then
A is isomorphic to a polynomial ring.

So it is natural to ask the following question:

Question 4.9. Is there a Buchsbaum homogenbeous integral domain (over k = k)
with minimal multiplicity of degree q ≥ 2?

14



Remark 4.10. Let d ≥ 2, hi (1 ≤ i ≤ d − 1), s ≥ 0 be integers. Then there exist
Buchsbaum homogeneous integral domains A over an algebraically closed field k
which has q-linear resolution such that dim A = d, codim A = 2 and such that
dimk H i

m(A) = hi for all i = 1, . . . , d− 1, where

q =
d−1∑
i=1

{
d+2−i∑
j=1

(−1)j · (j − 2) ·
(

d + 2

i + j

)}
hi + s− 3.

But this number “q is too big”! See [3, 7] and [1].
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