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ABSTRACT. Let K be a field of characteristic 0. Let px (5,103, 169) be the defining
ideal of the space monomial curve {(t°,¢19% ¢16%) | ¢+ € K}. In this paper we shall
prove that the symbolic Rees algebra R (px (5,103,169)) is not Noetherian, that
is, is not finitely generated over K.

1. INTRODUCTION

For a prime ideal @) of a commutative ring A, the nth symbolic power of @) is
defined to be Q" Ag N A, and denoted by Q™. We call the subring

AlQt, QP2 QW3]

of the polynomial ring A[t] the symbolic Rees algebra of @), and denoted by R4(Q).
This is not necessarily finitely generated as an A-algebra. In the case where A is
Noetherian, Ry(Q) is Noetherian if and only if R¢(Q) is finitely generated over A as
a ring.

In commutative algebra, the study of the finite generation (over the base ring)
of symbolic Rees algebras began with Cowsik’s problem [1]. Cowsik’s problem asks
whether the symbolic Rees algebra of a prime ideal in a polynomial ring over a field
is finitely generated. Cowsik seems to have considered this question in connection
with the set-theoretic complete intersection property of affine curves. The finite
generation of symbolic Rees algebras is also deeply related to other problems in
mathematics.

For example, symbolic Rees algebras often appear as Cox rings of algebraic vari-
eties or as their subrings. The finite generation of Cox rings of algebraic varieties, or
of their subrings, is a fundamental problem lying at the heart of birational geometry.

In 1956, Nagata [15] gave a counterexample to Hilbert’s fourteenth problem, and
in that paper he proposed the following conjecture, now known as Nagata’s conjec-
ture: “Let n be a natural number with n > 10. If there exists a plane curve of degree
d passing through n general points in the complex projective plane, each with mul-
tiplicity at least r, then d > \/nr.” Nagata proved this conjecture in the case where
n is a perfect square, and thereby obtained a counterexample to Hilbert’s fourteenth
problem. The finite generation of the symbolic Rees algebra of the space monomial
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primes defined below is closely related to Nagata’s conjecture (Proposition 5.2 in
3)).

Let K be a field. Let a, b, ¢ be pairwise coprime positive integers. Let S =
K[x,y,z] be a polynomial ring over K. Let pg(a,b,c) be the kernel of the K-
algebra homomorphism S % K[T] defined by o(z) = T, o(y) = T and ¢(z) = T°.
An ideal of this form is called a space monomial prime ideal. We sometimes denote
pK<aa ba C) Slmply by p.

If a prime ideal () is generated by a regular sequence, then the symbolic powers of
(@ coincide with its ordinary powers. Hence, in this case, the symbolic Rees algebra
of @) coincides with the ordinary Rees algebra of (), and therefore the symbolic Rees
algebra is finitely generated. The number of elements of a minimal generating set
of a space monomial prime ideal is either 2 or 3 by a result of Herzog [9]. When the
number of minimal generators is 3, a space monomial prime ideal can be regarded
as the simplest example of a prime ideal in a polynomial ring over a field that is
not generated by a regular sequence. For this reason, the symbolic Rees algebras of
space monomial primes have been studied extensively.

Huneke [10] gave a simple necessary and sufficient condition for the symbolic Rees
algebra of a space monomial prime to be finitely generated. Cutkosky [2] showed that
the symbolic Rees algebra of a space monomial prime is the Cox ring of a certain
algebraic surface, thereby giving a geometric interpretation of Huneke’s criterion.
Furthermore, using techniques from algebraic geometry and singularity theory, he
provided a sufficient condition for the symbolic Rees algebra of a space monomial
prime to be finitely generated. The first examples of non—finitely generated symbolic
Rees algebras were given by Goto-Nishida-Watanabe [8]. For example, when the
characteristic of the base field is zero, the symbolic Rees algebra corresponding
to (25,29,72) is not finitely generated. Gonzales—Gonzales—Karu [5], [6] introduced
techniques from toric geometry, which made it possible to construct many examples.

In what follows, we call the minimum of a, b, ¢ the degree of a space monomial
prime pg(a,b,c). By a theorem of Cutkosky [2], it is known that the symbolic Rees
algebra of a space monomial prime is finitely generated when the degree is at most
4, or equal to 6. Whether the symbolic Rees algebra of a space monomial prime
of degree 5 is finitely generated has remained unknown, and this has been one of
the intriguing open questions for researchers in this area. The main theorem of this
paper addresses this problem.

Theorem 1.1. Let K be a field of characteristic 0. Then the symbolic Rees algebra
Rs(px(5,103,169)) is not Noetherian, that is, is not finitely generated over S.

The author does not know any example of a space monomial prime of degree
8 whose symbolic Rees algebra is not Noetherian. In the case where the degree
is 5 or 8, if one of the minimal generators of pg(a,b,c) gives a negative curve
(defined in Definition 2.3 below), then the symbolic Rees algebra Ry(pg(a,b,c))
is Noetherian [4], [13], [16]. In the case where (a,b,¢) = (7,15,26), (9,13,29),
(10,11,27), (11,21,25), (12,13,17), (13,18,25),..., one of the minimal generators
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of px(a,b,c) gives a negative curve and the symbolic Rees algebra Rs(px(a,b,c)) is
not Noetherian if the characteristic of K is 0.

Finally, we describe the structure of this paper. In Section 2, we introduce tech-
niques from toric geometry and develop the general theory of negative curves. Using
these tools, we show that in the case (5,103, 169), there exists an element f of degree
2065 in the 7th symbolic power that defines a negative curve. In Section 3, we show
that if the symbolic Rees algebra of the space monomial prime (5,103,169) over a
field of characteristic zero is finitely generated, then there exists an element g of de-
gree 17407 in the 59th symbolic power such that f and g satisfy Huneke’s criterion.
In Section 4, we reduce the problem to the case of characteristic 2 and show that
the homogeneous component of degree 17407 of the 59th symbolic power is zero,
thereby completing the proof of the theorem. The computations in Section 4 were
carried out using a computer, but the results were also verified by hand without the
use of a computer.

2. NEGATIVE CURVE

Suppose that a, b, ¢ are pairwise coprime positive integers. We think that S =
Klz,y,z] is a graded ring with deg(z) = a, deg(y) = b and deg(z) = ¢. Then
px(a,b,c) is a homogeneous ideal of S.

We may suppose

t t t x*? yt3 PAS
_ (.8 1,U1 uz .52 LU 83,,t3\ __
pK(a’7b7C) - (.’L‘ — Yy z2,Yy —z2Tr, 2 —TY ) _12 ytl SU2 83 y

where s = s9+ 83, t = t1 +t3 and u = w3 +ug by Herzog [9]. Let o, ¥/, ¢ be integers
satisfying a’a + b'b + ¢ = 1 and put

(2.1) T =a%y" 2

Then we have

Putting

, W= —xssyts’

we have
S[x_l, y—l7 Z_l]o — K[xil’yil, Zil]o — K[Uil,wil]
as in the proof of Lemma 3.2 in [12]. It is easy to see that v*w?T™ € S if and only
! Soax — 838 +a'n >0
—ta —t38+bn >0
usx +uf + n > 0.
Let A be a triangle defined by

Sex — Ss3y+a >0
(2.2) —tr —t3y +b' >0
usx +uy +c >0
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in an z-y plane. We define the Erhart ring of A as

(2.3) K[A]:=EP b K|
n>0 \ (a,8)EnANZ2

Then K[A] naturally coincides with S = K|[z,v, z]. Let q be the ideal of K[v*!, w*!]
generated by v — 1 and w — 1. Then we have

pSlaty™ 27 = qS[ay T 2T
For m > 0, we have

pm = pmSzt y 2 NS =gmSahy L 2N S

— @ qm N @ Kv*w? | T,
n>0 (a,8)ENANZ?

The following proposition is well-known. Here we give an outline of a proof for
the reader’s convenience.

Proposition 2.1. (1) Let g1, go be an S-regular sequence with g; € [px(a,b,c)"™g
and g € [pr(a,b, )]y, for some positive integers 1, o, dy, da. Then we
have

é . @ > abe.
r T2
(2) The symbolic Rees algebra Ry(pk(a,b,c)) is Noetherian if and only if there
exists an S-reqular sequence g1, go with g1 € [px(a,b,c)"™]q, and gy €

bk (a,b,c)™)y, for some positive integers dy, dy, r1, ro such that
di dsy

r T

= abe.

Proof. (1) Take h such that g;, g2, h is a homogeneous system of parameters of S.
Then the Poincaré series of S/(g1, g2, h) is

(1 —t8)(1 — d2)(1 — ¢dee(M)
(1 —t2)(1 =) (1 —to)

Substituting 1 for ¢, we obtain
(2.4)
dyds deg(h
BN (/1.0 1) = (1), 5/ (01.9)) > L, (5 1. 92),)o((B). /) = 77 es(h).
where the first inequality follows from the additive formula of multiplicities and the
second one follows from Lemma 2.2 in [12].
(2) Let g1, g2 be a regular sequence satisfying g; € [p™],,, g2 € [p™)]4, and
% : f—; = abc. By (2.4), we know ls(S/(g1,g2,h)) = rirals(S/(h) + p). Then
Rs(pk(a,b,c)) is Noetherian by Huneke’s criterion [10].

Conversely assume that Rg(px(a,b,c)) is Noetherian. Put X = ProjS. Let
m 1Y — X be the blow-up at the point corresponding to pg(a,b,c). Let E be
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the exceptional curve. Then there exist curves C' and D on Y such that C' # F,
D # E and C N D = () by Cutkosky’s criterion [2]. Let g; and go be the defining
equations of 7(C) and (D), respectively. Suppose g € [p™]g, \ [p1*Y],, and
g2 € [pU]g, \ [pU2V]y,. Since 7(C) N «(D) is not empty and C N D = (), we
have v/(g1, g2) = p. Therefore the first “>” in (2.4) is “=". Here Spec K[v*!, w*!]
is an affine open subset of X. The blow-up of it at q is an open subscheme of
Y. The equations of 7(C) and 7(D) in Spec K[v*, w*!] are ¢} := ¢1/T98¥91) and
gh = go/T892)  respectively, where T is an element defined in (2.1). Here we put
B = K[v*', w*!],. By Lemma 2.2 in [12], we obtain (5(B/(g},¢5)) = rirs since
CND =0. Since lg,(Sy/(91,92)5) = {B(B/(g},95)), the second “ >” in (2.4) is
also “=". O

Definition 2.2. We say that the Huneke’s condition is satisfied if there exists an
S-regular sequence g1, go with g, € [px(a,b,c)™]y, and gy € [px(a,b,c))],, for
some positive integers dy, ds, r1, r9 such that % . f—; = abc.

Definition 2.3. A non-zero homogeneous irreducible polynomial f in S is called a
negative curve if f is contained in [p(a,b,c))]4, for some positive integers 7o, do

with dy/ro < Vabc.

In the case where the characteristic of K is positive, Cutkosky [2] proved that
Rs(pk(a,b,c)) is Noetherian if there exists a negative curve. In the case where the
characteristic of K is 0, Rs(px(a,b,c)) is not necessarily Noetherian even if there
exists a negative curve (Goto-Nishida-Watanabe [8]).

Remark 2.4. (1) Suppose that f is a negative curve, that is, f is an irreducible
element in [p()], with do/ro < Vabe. Suppose g € [px(a,b,c)]; for
some positive integers r, d with d/r < abc/(dy/r¢). Then f divides g by
Proposition 2.1 (1).

We know that, if a negative curve exists, it is determined uniquely up to
multiplication by an element of K*.
(2) Assume that [px(a,b, )]y # 0 for some positive integers r, d with d/r <
Vabe. Suppose 0 # f € [px(a,b,c¢)™]y. Consider the irreducible decomposi-
tion f = fifs--- fu. Since the associated graded ring

(2.5) Shpap/r?op@p®e...

is an integral domain, one of f;’s is a negative curve. Therefore there exists
a negative curve if and only if [px(a,b,c)]q # 0 for some positive integers
r, d with d/r < \/abc.

(3) Let L/K be a field extension. It is easy to see

b (a,b,¢))g @k L =[pr(a,b,c)]q

for any r, d.

We know that Rs(px(a, b, c)) is Noetherian if and only if so is Rs(pr(a,b,c)).
In particular, the finite generation of Ry(px(a,b,c)) depends only on ch(K),
a, b, c.
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There exists a negative curve in the case K, a, b, ¢ if and only if so does
in the case L, a, b, c. Furthermore assume that K is a prime field. If f is
a negative curve in the case K, a, b, ¢, then f is also a negative curve in
the case L, a, b, c. If a negative curve exists, we may assume that it is a
polynomial over the prime field and it is absolutely irreducible.

Suppose f is a negative curve in [pg(a,b,c))],, for some positive integers
0, do with do/ro < Vabe. Then 1 is also uniquely determined as follows:
We may assume that the coefficients of f are in the prime field. Assume that

f € [px(a,b, )0ty and do/ro < Vabe. It is easy to see that %, g—i, % are

contained in px(a,b,c)). If % is not 0, f divides it and the degree of % is
less than that of f. It is a contradiction. Thus we know % = g—i = % = 0.
Then we may assume that the characteristic of K is a prime number p. Since
the coefficients of f are in the prime field, there exists a polynomial f’ such
that f = f'7. It is a contradiction since f is irreducible.

Suppose [ is a negative curve in [pg(a,b,c))],, for some positive integers
ro, do with do/r¢ < Vabe. Suppose r > 0 and d > 0. If d/r < dy/rg, then
[p™]q = 0 as follows: Assume 0 # g € [p™]y and d/r < dy/ro. Then, by (1),
f divides g. Put g = fhand h € [p™]\ [p""*V]4. Here remark that r > g
since d > dy and d/r < dy/ro. Then g = fh € [pTo+™ )]y ra \ [P Y] 40 1o
since the associated graded ring (2.5) is an integral domain and f ¢ p(ro+?)
by (4). Then r < 7o+ 7" and d = dy + d'. Theefore

¢ _d—dy _dy

;=
T r—T7To To

Thus g is divisible by f™ for any n > 0. It is a contradiction.
Suppose that Huneke’s condition is satisfied, that is, there exists an S-regular
sequence g1, go with g1 € [p(a, b, )]y, and gs € [pr(a,b,¢)"]q, (di, da,
r1, T2 are positive integers) such that

dy dy

o To

= abe.

We may assume
d d
t < Vabe < cy
T1 T2

If a negative curve does not exist, then we have

d d
222 Vabe
T2
by (2).
Assume that there exists a negative curve f in [pg(a,b, c))],, for some

positive integers 1¢, dy with dy/r¢ < Vabc. We have
dy dy

=< =
To 1
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by (5). If ‘f—g < %, then both of ¢g; and ¢y are divisible by f. It is a
contradiction. Therefore we obtain
dy d;

To T1
In this case, we can prove g; = cf" for a positive integer n and c € K*.

(7) Let g1, g2 be homogeneous elements of S. Then g, go satisfies Huneke’s
condition if and only if there exists positive integers ¢; and {5 such that gfl,
g4? satisfies Huneke’s condition.

Assume that there exists a negative curve f. If there exist g, g satisfying
Huneke’s condition, we may assume that g; is a power of f by (6). Then f,
go also satisfies Huneke’s condition.

(8) Let L/K be a field extension. Assume that there exists a negative curve
f. For positive integers r, d, there exists g in [px(a,b,c)™]; such that f,
g satisfies Huneke’s condition if and only if there exists ¢’ in [pz(a, b, c)™]q4
such that f, ¢’ satisfies Huneke’s condition.

For a subset ) of Z2, we put

KQ = @ Kv*w? ¢ K[u*t w®.
(a,f)eQ
For a finite set M, # (M) denotes the number of elements contained in M.

The following proposition is essentially proved in [14]. Here we give an outline of
a proof for the reader’s convenience.

Proposition 2.5. Let K be a field of characteristic 0. Let Q be a subset of Z2. Let L
be a line in R? such that L contains infinitely many points of Z*. Put Q' = Q\(LNQ).
Then, for each positive integer m, there exists a K-linear map

Y KQN g™ — KQ' Ng™™!
satisfying the following conditions:
(1) The map 1, is surjective if #(L N Q) > m.
(2) The map 1, is injective if (LN Q) < m.
(3) For (o, Bo) € Q" and £ € KQNq™, the coefficient of vow™ in & is 0 if and
only if that in V¥, (&) is 0.

Proof. First of all, remember that, for h € K[v*!, w*!], the following two conditions
are equivalent:

e heqm
e For non-negative integers p, ¢ with p + q¢ < m,
optap
2.6 =0.
(2:6) OvPOw1

(v,w)=(1,1)

Considering a multiplication of v®w”" and an action of GL(2,Z), we may assume
that L is the y-axis.
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It is enough to construct a K-isomorphism v, : KQ N q" — KQ' N g™t
satisfying the above (3) in the case #(LN Q) =m
Suppose
LN Q = {(07 51)7 (Oa /62)a sy (07 5m)}7

where ;1 < By < -+ < (,,. Remark

Q=Q\(LNQ)={(a,p) €Q|a#0}
If £ is in g™, then v% is in g™, We define a K-linear map v, : KQ Nq™ —
KQ' Nng™ ! by ¢,,(&) = v%. It is easy to check that 1) satisfies the above (3).
We shall prove that v, is an isomorphism.
First we shall prove that 1, is injective. Take ¢ € Kery,,. Then ¢ satisfies
9

5y 0. Therefore we may assume
v

m
£=) cu”,
j=1

where ¢; € K for each j. Since £ € 9, we know

au
5 i(l 1)=0
foru=0,1,...,m — 1. Hence we obtain
8“5
(2.7) 0= chﬁj (B —u+1)
foru =10,1,... — 1. The matrix corresponding to the simultaneous equations
(2. 7 is t he followmg
1 1 - 1
ﬁl 62 e /Bm

ﬁl(ﬁl - 1) 52(52 - 1) o ﬁm(ﬁm - 1)

51(51—1)"'.(51—7”‘1‘2) 52(52—1)"'.(52—”&‘1‘2) ﬁm(ﬁm—l)“:(ﬁm—m‘i‘?)

After some elementary transformations of rows, we obtain

1 ... 1
b o DB
AR e
Since this matrix is invertible, (2.7) implies ¢; =0 for j =1,2,...,m.

Next we shall prove that 1, is surjective. Take

Z b(a,3) VW Fek@Q ngmt,
(a,3)€Q’
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where b, 5 € K. We define

1
n= Z —b(aﬁ)v“wﬁ S KQ/
(a,)eQ’
Put
(2.8) 5(01,02,...,cm):ﬁ+ZCjwﬂj e KQ
j=1
for ¢y, ¢9,..., ¢ € K. Since
0 on
(2.9) %é(cl, Cy ey Cm) = 8_Z =vlpeqn!,
we have
n = v%ﬂch €2y vy Cm)-
In order to show 7 € Im(v,,), it is sufficient to show &(cq, ¢, ..., ) € g™ for some
C1,Cy ..., Cm € K.
By (2.9) and the equivalence (2.6), we know
8i+j§(01, Co, ... 7Cm)
L —0
vt owI () =(1,1)

for ¢ and j satisfying ¢ > 0, j > 0, and 0 < i 4+ j < m. Therefore it is enough to

show

Pelerntnan g 1) = ST 1 1) 30 ey - 1) (8 —u 1) =0
j=1

ow owt
foru=20,1,...,m — 1 and for some ¢y, cs,...,c,, € K. That is to say, it is enough
that ¢q, o, ..., ¢, satisfies
1 1 1
b B2 Brm
Bi(B1—1) Ba(B2 — 1) B (B — 1)
Bi(Br—1)--(Br—m+2) Bo(fo—1)--(Bo—m~+2) -+ Bu(Bn—1)(Bn—m+2)
§7~(1’1)
5e(1,1)
.
— —| @D
gurt (1,1)

., Cry satisfying the
O

Since the above m x m matrix is invertible, there exist ¢, co, ..

above equation.

1
C2
C3
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Put X = ProjS. Let Y be the blow-up at the point corresponding to pg(a, b, c).
Assume that f is a negative curve in [pg(a, b, ¢)")],, with do/ro < Vabe. Let C be
the proper transform of V. (f). Then C' is a curve on Y satisfying

dg

02:@—T(Q)<O.

Proposition 2.6. Let K be a field of characteristic 0.
(1) There exists a negative curve f € [px(5,103,169)V]anes, that is, there exists
an irreducible polynomial f € [p(5,103,169)Mgges. (Here remark 2065/7 <

V5103 -169.) The coefficient of z*'3 in f is not zero.
(2) Furthermore assume that K is algebraically closed. Let C be the proper

transform of V. (f) where f is the negative curve as in (1). Then C is
isomorphic to P

Proof. We shall prove (1). Remark that

8 W

28
pic(5,103,169) = I ( ;52 Y ) ,

where Io( ) stands for the ideal generated by the 2-minors of the given matrix.
Consider the triangle 2065A, where A is the triangle defined as in (2.2).

2065A =

(2.10)

Here recall

Saogs = K (2065A N Z2)T20%
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as in (2.3), where K (2065A NZ2) is the K-vector space spanned by {v*w” | (o, 8) €
2065A N Z?}. The bottom lattice point corresponds to z*3. The top lattice point
corresponds to y?z!'. Here remark

[ (5,103, 169) V]ones = (K (2065A N 2%) N q7) T2,

Counting from the top, the numbers of lattice points in each row are 1, 3, 5, 7, 6,
4, 2, 1. We know that, by Proposition 2.5, there exists a polynomial f such that

bk (5,103,169) Vg5 = K f,

where the coefficients of 23 and y?2!' in f are both non-zero. (First we set L to

be the line containing 7 lattice points in the fourth row from the top and apply
Proposition 2.5. Next, we set L to be the line containing 6 lattice points in the fifth
row from the top, and so on.) Hence f is not divided by z, y and z. Put f = f712%5
where

feKQ6SANZ )N = P  Kvw’ng

(a,3)€2065ANZ2

as in (2.3). It is enough to show that f is irreducible in K[v*!, w*!].
Here consider

2y =z
pK(5,11,18) — IQ < y2 Py 1‘5 ) .

Let ~A be the triangle as in (2.2) in the case (a,b,c) = (5,11, 18). Then 220A and
126 are as follows:

220A =
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126A =

The bottom lattice point in 220A corresponds to z*4. The bottom (resp. top, left)
lattice point in 126A corresponds to xy't (resp. 27, 2%3y). We know that, by Propo-
sition 2.5, there exists a polynomial g; such that

[pr (5,11, 18)(7)]220 = Ky,

where the coefficient of 2** in g, is non-zero. Put g; = §,7°*°, where

g1 € @ Kv*w’ nq”

(a,8)€220ANZ2

as in (2.3). Then there exists a unit e in K[vo=', w*'] such that f = ej. By
Proposition 2.5, there exists a polynomial g, such that

[pr (5,11, 18)(4)]126 = Kgs,

where the coefficients of zy'!, 2" and 2*y in ¢, are non-zero. Therefore g, is not
divisible by z, y, z. Put go = g1, where go € K(126A NZ?) N q*. Then gy is
irreducible by Lemma 2.3 in [7] since the coefficients of the top and left lattice points
are not 0. Hence g, is irreducible. Since the coefficient of 2% in ¢, is non-zero, the
sequence g, go is S-regular. Since

220 126
7-725-11'18,
g1, go satisfies Huneke’s condition. Since
220 126
R

g1 is congruence to a power of the negative curve in the case (a,b,c) = (5,11, 18)
by Remark 2.4 (6). Since 220 is not a multiple of 7, there does not exist a negative
curve with rg = 1. Therefore we know that ¢, itself is a negative curve in the
case (a,b,c) = (5,11,18). Hence g; and g, are irreducible. Then f is irreducible.
Therefore f is a negative curve in the case (a, b, c) = (5,103, 169).
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Next we shall prove (2). Since K is algebraically closed, it is enough to show
H'(O¢) = 0. By the exact sequence

0— Oy(—-C) — Oy — Oc — 0,

we have an isomorphism
H'(Oc) = H*(Oy(=C))

since H'(Oy) = H*(Oy) = 0 by Leray’s spectral sequence. By the Serre duality,
we obtain

H2(Oy (~C)) = HY(Oy (C + Ky).
Let H be the pullback of Ox(1). Then H and E are minimal generators of CI(Y').
Then C' is linearly equivalent to dgyH — rqFf = 2065H — 7TE. Since Ky is linearly
equivalent to (—5 — 103 — 169)H + E, we have Oy (C + Ky ) ~ Oy (1788H — 6E).
Hence
HY(Oy (1788H — 6F)) = K(1788A N Z*) N ¢°.

Here remark that 1788A N Z? corresponds to the lattice points in the interior of
2065A in (2.10). Counting from the top, the numbers of lattice points in each row
in the interior of 2065A are 2, 5, 6, 4, 3, 1. By Proposition 2.5, we obtain

K(788ANZ*) Ng° = 0.
We have completed the proof of Proposition 2.6. U

3. HUNEKE’S CONDITION

Let a, b, ¢ be pairwise coprime positive integers. Remember X = ProjS and Y
is the blow-up of X at px(a,b,c).
In this section, we shall prove the following theorem:

Theorem 3.1. Let K be an algebraically closed field of characteristic 0. Let a, b,
¢ be pairwise coprime positive integers. Assume that there exists a negative curve
f € [pr(a,b,c)]y with do/ro < Vabe. Let dy and vy be positive integers satisfying
the following four conditions

(a) i—g . f—; = abc.

(b) f & (y,2)S ora divides ds.
(c) f & (z,2)S orb divides ds.
(d) f & (x,y)S orc divides ds.

Assume the following three conditions:

(1) Rs(px(a,b,c)) is Noetherian.
(2) Let C be the proper transform of V..(f). Then C is isomorphic to Pk
(3) There exists a positive integer £ such that H'(Oy (doH — roE — (C')) = 0.

Then there exists go € [px(a,b, )™y, such that f, g, satisfies Huneke’s condi-
tion.
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Remark 3.2. We can describe Theorem 3.1 using only algebraic language. The
above condition (2) is equivalent to [px(a,b,¢)™ Y]4 oy = 0 as in the proof of
Proposition 2.6 (2). For the condition (3), we know H'(Oy(doH — roE — (C)) # 0
if ro — lrog < —2, and

0 7“2—67'0:—1,0

Hl(OY(dQH - TQE _ KC)) = { Hi(p](((l, b, c)(rg—f?“o))dz_gdo ro — éro > 07

where m = (z,y, 2)S by Leray’s spectral sequence.

The author has two different proofs of the above theorem. The first proof uses
the technique of reduction mod p, and this method is employed in [8] and [12]. The
second proof examines the transition functions of line bundles; this approach is used
n [11]. We shall present the second proof below.

Before starting to prove the above theorem, we need to prove the following easy
lemma:

Lemma 3.3. Let K be a field of characteristic 0. Let m be a positive integer. Let
A be a K-algebra and I be a nilpotent ideal of A.

Let m : A — A/I be the natural surjective ring homomorphism. Assume that
s€ Aandre (A/I)* satisfy r™ = m(s).

Then there uniquely exists u € A such that w(u) = r and u™ = s.

Proof. It is enough to show it in the case where I? = 0. Take /' € A* such that
m(u') = r. Suppose v € I. Then 7(u' + ) = r is satisfied. We have

r(( +9)") = 7w +y)" = " = w(s).
Therefore there exists € I such that

b= +79)"—s=((u)"—s)+mu)" .

Here, since 7((u/)™ — s) = 7(u/)™ — 7(s) = 0, we know (/)™ —s € [. If vy =
—m ()" H™ 1 ((u/)™ — 5), we have § = 0. Therefore we obtain

(w = m™ (W) ™H)"H(W)" = 5)" = s.

O

Proof of Theorem 3.1. If gy, g5 satisty Huneke’s condition, then we may assume that

one of g; and gy is f by Remark 2.4 (7). Assume that there exists g € [px(a,b, )]y
such that f, g satisfies Huneke’s condition. Then we have
dy d
2.2 = abe.
To T
Therefore we have d/r = dy/r3 by (a). Replacing r, d by suitable multiples, we may
assume that there exists a positive integer m such that r = mry and d = mds.
We can take finite number of affine open subsets Uy, ..., U, of Y satisfying

e {C'NU;}, is an affine open covering of C,
® Oy(dgH — T2E)|Ui ~ OUZ- for ¢ = 1,2, o,
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for the following reasons: The singular points of Y come from those of X = ProjS.
The singular points of X are contained in {Vi(x,vy),Vi(y,2),Vi(z,2)}. If f &
(y,2)S, then C does not pass through V. (y,z). Suppose f € (y,z)S. Since a
divides dy, Oy (do H — o E) is locally free at V, (y, z). Thus Oy (doH —ryE) is locally
free near C.
The divisorial sheaf Oy (dyH — roF) is a line bundle on U := U;U;. Let
{ti; € T(Oy(Us N U;)) " }iy

be the transition function of Oy (doH — 1 E)|y.

Let Dy be the proper transform of V, (g). Since D is an effective divisor such
that Dy ~ mdoH — mroFE and Dy N C = (), we obtain Oy (mdoH — mryE) | ~ Oy
for any ¢ > 0. Here ¢C' is the closed subscheme defined by the ideal sheaf Oy (—£C').
Therefore there exists s; € I'(Oy (U; N €C))* for i = 1,2,...,n such that

si = (tijlec)™s;
in I'(Oy (U; NU; NLC))* for any 4, j. Therefore we obtain
sile = (tijlc)™s;lc

in IOy (U;NU; N C))* for any i, j.

Since (dyH—r9F).C' = 0 and C' ~ Pk, we have Oy (do H —13E)|c =~ O¢. Therefore
there exists 7, € I'(Oy(U; N C))* for i = 1,2,...,n such that

ri = (tijlo)r;
in IOy (U; NU; N C))* for any i, j. Hence we obtain
rit = (tile)™r}
in I'(Oy (U;NU;NC))* for any i, j. Since Oy (mdeH —mryE)|c ~ O¢ and I'(O¢) =
K, there exists ¢ € K* such that
qri" = silc

in ['(Oy (U;NC))* for i = 1,2,...,n. Replacing r; by ¢"/™r;, we may assume q = 1.
Then, by Lemma 3.3, there exists u; € I'(Oy (U;NLC))* for i = 1,2,...,n such that
u = s; and w;|¢ = 1;. By the uniqueness in Lemma 3.3, w; = (t;;|ec)u; is satisfied

i

for any ¢, j. Thus we know
(3.1) OY(dQH - 7’2E)|£C ~ O

for any ¢ > 0.
Supppose that ¢ is a positive integer satisfying the condition (3) in Theorem 3.1.
Consider the exact sequence

0 — Oy (—4C) — Oy — Opc — 0.
Since Oy (doH — ryF) is a line bundle near C, we obtain the exact sequence
0 — Oy(doeH — 1 — (C) — Oy (doH — 1oF) — Oy (doH — r9E)|sc — 0.
Then we obtain an exact sequence
H°(Oy(doH — 13E)) — H*(Oy(doH — r2E)|ec) — H' (Oy(doH — roE — (C)).
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By the condition (3) in Theorem 3.1, we know H'(Oy (dyH —roE —(C)) = 0. Since
H°(Oy(doH — 15E)) - H(Oy (doH — 13E)|ic) = H*(Oyc) - H(Oc) = K

by (3.1), there exists a section in H%(Oy (doH — 13 F)) which does not vanish at each
point of C. Therefore there exists an effective divisor D such that D ~ doH — roF
and C N D = (). The defining equation of D satisfies our requirement. O

4. THE PROOF OF INFINITE GENERATION

In this section, we shall prove Theorem 1.1.

We shall prove Theorem 1.1 by contradiction. Assume that Rs(px(5,103,169)) is
Noetherian, where K is an algebraically closed field of characteristic 0.

There exists a negative curve f as in Proposition 2.6 (1) with f ¢ (y, 2)S. There-
fore dy = 103-169 and o = 59 satisfy the conditions (a), (b), (c), (d) in Theorem 3.1.
The condition (2) in Theorem 3.1 is satisfied by Proposition 2.6 (2). We shall prove
that the condition (3) in Theorem 3.1 is satisfied with ¢ = 8. Here we have

doH —roF — (C =103 - 169H — 59F — 8(2065H — 7TE) = 837H — 3E.

28

w0
b

887TA = —5 = 3

S
DN =

We know dimg Sgg; = 6 and dimg[pg(5,103,169)3)]gs; = 0 by Proposition 2.5.
Therefore we obtain H'(Oy(887H — 3E)) = 0.' Hence, if Ry(px(5,103,169)) is
Noetherian where K is an algebraically closed field of characteristic 0, we know that
there exists gy € [px (5,103, 169)] 7497 such that f, g, satisfies Huneke’s condition
by Theorem 3.1.

Let F5 be the prime field of characteristic 2. It is easy to see

dimg [pr(5,103,169)V ] 7407 = dimg[pg (5, 103, 169) )] 17407 < dimg, [pr, (5, 103, 169) )] 7407.
Then the infinite generation of R,(px(5,103,169)) immediately comes from the

following lemma:

I¥or pairwise coprime positive integers a, b, ¢, a field K, and positive integers r, d, we have
r(r+1)
2

= dimg Sy — dimg H*(Oy (dH — rE)) + dimg H*(Oy (dH — rE)).
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Lemma 4.1. [pg, (5,103, 169)59] 17497 = 0.

The calculations in the proof of the above lemma were carried out using a com-
puter; however, the author also verified them by hand without using a computer.

Proof. We assume that the base field is Fs.
Consider the following homogeneous elements of the symbolic powers of p =
pr, (5,103, 169):
A01 =y — 2z € [p300
B01 =22 — x47y S [p]338
C01 :y2Z —zP e [p]375
D02 =(yA01B01 — C01?) /2%

:yz?’ + {L‘( .. ) c [p(2)]610
D03 =(C01D02 — A01B01?) /2"

:y7z + ]7( .. ) c [p(3)]890
D04 =(B01D03 — A01°D02) /z°

:Z7 + x( .. ) c [p(4)]1183
D07 =(D02°D03 — A01°D04) /z°

:y2z11 + 3;( .. ) c [p(7)]2065

D09 =(A01°D07 — D02D03D04) /x

:y26 + x(. .. ) c [p(g)]2678
D15 =(D03D04* — A01D07?)

=y () € [p"]aa20
D25 =(D02D03%*D07* — D04*D09) /2

:y6226 + ZL’( .. ) c [p(25)]7400

D29 =(D02D04* D15 — D03 D072 D09) /z*

:y8oz2 + I‘( .. ) c [p(29)]8578

D32 =(D03*D04> D15 — DO7TD25) /x

=y ()€ [P(32)]9460

D37 =(D03°D07D15 — D04*>D29) /x

299825 +a(---) € [P(37)]10939

D41 =(y*A01°D04D07° — 2B01D02D03D07° — 2y B01* D04D07° — x'°yB01D04° DO7D09
— 2"y D022 D37 — 2%y A01°D09D15? — 2** D04* D09 — 2% D02D04° D15 — x*? D04 D37) /2*

:ZUHGZ +a(---) € [P(41)]12117
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D43 =(y*A012D04D07* D09 — 2B01D02D03D07* D09 — 2°yB012D04D07* D09

— 2'°2401D02D04D073 D15 — 21y A01B01D02D07? D25 — 2'2y A01B01D02D07D32—
3y B01D02D03D37 — 24y A01*D09D15? — 2*2yD02D04D37 — %"y A01D03D04D07°
— 2*yD03D04D073 D15 — 2*° D022 D07*> D25 — ° D022 D07D32 — 241 A012D04 D37

— 2*2A012D41 — % D02D04° D073 — 2*° D02D032D07° — 2*" D04" D15—

2" D032 D04> DO7* D15) /"

=520 + 2 (- € [P 12600

D49 =(yB01D04*D07D25 — 2D03*D07* D15 — xyB01D04* D32 — 2y A012 D032 D41

— 2"y A01°D04D07°% — 2%y A01>D04D07* D15 — 23y D032 D43 — 2%y D07"

— ¥ B01°D04D07* D15 — 2* B01D02D07* D25 — 2** B01D02D07? D32

— 2?1 A01D02?D07D37 — 2?2 B01D02D03D43 — 222 A01* D15* — 2*° D04° D25
— 22 D04° D29 — ¥ D04 D37 — 23 D02D04D43) /2**

:y134z4 + ZL‘( . ) c [p(49)]14478

D53 =(yB01D04° D0O7D25 — 2D03*D04D07* D15 — xyB01D04° D32 — x*yD02* D49—

25y D02D04" D07 — 2"yB01D03D07" — 2%y D03D04D072 D25 — 23y D032 D04 D43
— 2% D04D07" — 2'¥B012D04> D07 D15 — ' B01.D02D04 D073 D25
— 2?°B01D02D04D07*D32 — 2*' A01B01 D072 D37 — 2*° B01D04° D074
— 2% D04 D25 — % D04° D29 — 232 D04 D49) /2%
=y t+a(--) € [p(53)]15656

D56 =(yB01D04* D07>D25 — 2D03*>D07° D15 — 2yB01D04* D07D32 — 2*yA01.D02D04 D49

— 2°yA01D02D53 — 2%y A012D04D07° D15 — '3y D03* D07D43 — 2%y DO7®

— 28 B012D04D07° D15 — 2" B01D02D07* D25 — 2*° B01D02D072 D32

— 22 A01D02°D07* D37 — 2?2 B01D02D03D07D43 — 2*3 A01° D04 D49 — 2** A013 D53
— 2% D04°D07D25 — % D04°D32) /2%

=yt +a() € [ )iess

Let I be a homogeneous ideal contained in p©®?) generated by the following 105

elements:



B013 D044,

D02D04° D073,
D02D04%2 D077,
D03DO078,

B01D047 D073 D09,
B01D077 D09,
D02D047 D072 D15,
D02D076D15,
B01D02D04% D07 D25,
A01B01D04D074 D25,
D02D047 D29,
D02D04D073 D32,
A01D074 D152,
C01D073 D37,
A014D04D07%2 D37,
A01B01D072D43,
A012D03D04D07D43,
D033 D07D43,
A012B01D03D04D49,
B01D02D56,

A013 D56,
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B01D02D044,
B01D02D047 D074,
B01D02D078,
A013 D078,

D033 D042 D076,
C01D077 D09,
B01D02D04% D073 D15,
A01B01D07°D15,
D04° D072 D25,
D033 D075 D15,
B01D02D04% D32,
A01B01D04D073 D32,
D02D04° D37,
A01D073 D37,
D04%* D43,
A01C01D072 D43,
A01°D04D07D43,
A01D02D07D49,
D032D04D49,
C01D02D56,
A012B01D03D53,

D043 D07,

D045 D075,
C01D02D078,
D02D0412 D09,
D02D04°% D074 D09,
D041 D15,

D04* D074 D15,
A01C01D07%D15,
B01D043 D073 D25,
A012D04D074 D25,
D045 D07D32,
D042D073 D152,

B01D02D04% D07D37,
B01D03D04D072 D37,

B01D042D07D43,
A012D072 D43,
D072D153,
A012B01D07D49,
A013D03D04D49,
A01D02D56,
D032D53,

Let L be a monomial ideal of kly, z] as follows:

Let D be the 7,jth entry of the 21 x 5 matrix of generators of I. If y*2!
1,7th entry of the 21 x 5 matrix of generators of L, then we have

2104, y21037
y7299 y9298
y152’94 y17z93,
y23289, y252’88,
y32284’ y33283
y40279’ y 278
y48274, y50273,
y56269 y582687
y 2647 y662637
y732’ y74Z
y81254’ y832’53,
y89249’ y91z48,
y97z y99243
y106239, y1072387
y114234, y115z337
y122229, y1242287
y130224, y132223’
y138219 y1402
y147z , y1482137
y15529’ y157z ,
y1632’ ’ y165237

D = ykzl

Thus we have (L,z)S =1+ xS.

y22102 y4 101
y Z97 y 296
y192’92, y20291,
y27Z87, y282’867
Z/35282, y37281,
y43277’ y452767
y51272, y532717
y6OZ67, y61266’
y682627 y7OZ
y76257’ y782567
y842’52, y86251,
y92Z47, y94246‘,
yIOIZ y1022
Z/IOQZS?, y111236’
y117232’ y119231’
y125227, y1272267
y133222’ y135221
y142217’ y143z ’
y1502 ’ y1522 ’
y15827, y16026,
y166Z , ylﬁSZ,

mod z.

19

B01D04' D072, B012D04° D073,
B01D04* D078, B012D042 D077,
A01D02D078, B01A012D078,
D032D04D077, D04° D072 D09,
B01D02D043 D075 D09, D042D07%D09,
B01D04° DO7D15, B012D047 D072 D15,
B01D042 D075 D15, B012D07%D15,
A012D07%D15, D02D048 D25,
B012D04D07* D25, D02D04D07* D25,
B01D02D03D074 D25, D07°D09D15,
B01D043 D072 D32, B012D04D073 D32,
A012D04D073 D32, B01D02D03D073 D32,
D042 D072 D37, B01D073D37,
C01D03D04D072 D37, A01D03D04D072 D37,
B012D072 D43, D02D07% D43,
A01B01D03D04D07D43, A01C01D03D04D07D43,
D02D042 D49, B01D02D07D49,
D03D07D49, A013D07DA49,
B012D04D53, D02D04D53,
A012B01D56, D03D56,
A013D03D53, A015D53
yﬁ 2100
y 295
y 290
30 85
Yy -z,
38 .80
Yy -z,
47 75
Yz,
55,70
y -z,
63 .65
Yy -z o
y71 p
79 55
y -z,
88 .50
y -z,
y96 245
y1o4 240
112 35
YTz,
120 .30
YR
129 .25
y e,
y137 z20
y145 e
153 10
y e,
161 .5
y e
170
Y

is the
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Furthermore we have

0(S/T+xS) = ((kly, 2]/ L) = 8850 = (59 X 60

) x5 =e((z),S/p"") = ¢(S/p®)+15).

The proof of the second equality in the above equation requires some calculation.
Then we have I + 25 = p©®) + 25. Since p©? =T + (S Np©®)) = I + 2p®), we
obtain I = p®? by Nakayama’s lemma.

The matrix whose entries are the degrees of the generators of I is the following:

17576, 17510, 17444, 17481, 17518,
17452, 17489, 17423, 17460, 17497,
17431, 17468, 17505, 17439, 17476,
17410, 17447, 17484, 17418, 17455,
17492, 17426, 17463, 17500, 17434,
17471, 17508, 17442, 17479, 17516,
17450, 17487, 17421, 17458, 17495,
17429, 17466, 17503, 17437, 17474,
17511, 17445, 17482, 17519, 17453,
17490, 17424, 17461, 17498, 17432,
17469, 17506, 17440, 17477, 17514,
17448, 17485, 17419, 17456, 17493,
17427, 17464, 17501, 17435, 17472,
17509, 17443, 17480, 17517, 17451,
17488, 17422, 17459, 17496, 17430,
17467, 17504, 17438, 17475, 17512,
17446, 17483, 17417, 17454, 17491,
17425, 17462, 17499, 17433, 17470,
17507, 17441, 17478, 17515, 17449,
17486, 17523, 17457, 17494, 17428,
17465, 17502, 17436, 17473, 17510

Then we know the minimal degree of generators of I is 17410, which is the degree
of D03DO078.
Thus we know

[9(59)] 17407 = 0.

Remark 4.2. Consider the subring
A := S[A01t, BO1t, C01t, D02t?, DO3t%, . .., D56t
of the symbolic Rees algebra
Ry (pr,(5,103,169)) = S[pt, p@P#2 p®e3, .. .
If n <59, then we have
AN St" = pg, (5,103, 169)™¢".
We don’t need this equation in this paper.



SYMBOLIC REES ALGEBRAS 21

ACKNOWLEDGEMENT

The author would like to express their sincere gratitude to the members of the
Goto Seminar, especially Yasuhiro Shimoda and Koji Nishida.

REFERENCES

[1] R. C. Cowsik, Symbolic powers and number of defining equations, Algebra and its applica-

tions (New Delhi, 1981), Lecture Notes in Pure and Appl. Math. 91, Dekker, New York, 1984,
13-14.

S. D. CUTKOSKY, Symbolic algebras of monomial primes, J. reine angew. Math. 416 (1991),
71-89.

S D. Cutkosky AND K. KURANO, Asymptotic reqularity of powers of ideals of points in a
weighted projective plane, Kyoto J. Math. 51 (2011), 25-45.

T. EBINA, Master theses, Meiji University 2017 (Japanese).

J. L. GoNzALEzZ AND K. KARU, Some non-finitely generated Coz rings, Compos. Math. 152
(2016), 984-996.

J. GONZALEZ-ANAYA, J. L. GONZALEZ AND K. KARU, Constructing non-Mori Dream Spaces
from negative curves, J, Algebra 539 (2019), 118-137.

J. GONZALEZ-ANAYA, J. L. GONZALEZ AND K. KARU, Curves generating extremal rays in
blowups ofweighted projective planes, J. of London Math. Soc. 104 (2021), 1342-1362.

S. Goro, K. NisHIDA AND K.-1. WATANABE, Non-Cohen-Macaulay symbolic blow-ups for
space monomial curves and counterexamples to Cowsik’s question, Proc. Amer. Math. Soc.
120 (1994), 383-392.

J. HERZOG, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta
Math. 3 (1970), 175-193.

C. HUNEKE, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318.
T. INAGAWA AND K. KURANO, Some necessary and sufficient condition for finite generation
of symbolic Rees rings, J. Algebra 619 (2023), 153-198.

K. KURANO AND K. NISHIDA, Infinitely generated symbolic Rees rings of space monomial
curves having negative curves, Michigan Math. J. 68 (2019), 405-445.

M. MATSUURA, Master theses, Meiji University 2019 (Japanese).

E. M1YAHARA, Master theses, Meiji University 2024 (Japanese).

M. NAGATA, On the 1/-th Problem of Hilbert, Amer. J. Math. 81 (1959) 766—772.

K. UcHisAwA, Master theses, Meiji University 2017 (Japanese).

Kazuhiko Kurano

Department of Mathematics

Faculty of Science and Technology

Meiji University

Higashimita 1-1-1, Tama-ku

Kawasaki 214-8571, Japan
kurano@meiji.ac. jp
http://www.isc.meiji.ac.jp/ kurano



