INFINITELY GENERATED SYMBOLIC REES RINGS OF
POSITIVE CHARACTERISTIC

KAZUHIKO KURANO

ABSTRACT. Let X be a toric variety over a field K determined by a triangle.
Let Y be the blow-up at (1,1) in X. In this paper we give some criteria for finite
generation of the Cox ring of Y in the case where Y has a curve C such that C? < 0
and C.E = 1 (E is the exceptional divisor). The natural surjection Z3 — CI1(X)
gives the ring homomorphism K[Z3] — K[CI(X)]. We denote by I the kernel of
the composite map K[r,y, 2] C K[Z3] — K[CI(X)]. Then Cox(Y) coincides with
the extended symbolic Rees ring R, (I). In the case where Cl(X) is torsion-free,
this ideal I is the defining ideal of a space monomial curve.

Let A be the triangle (4.1) below. Then I is the ideal of K|z, y, z] generated by
2-minors of the 2 x 3-matrix {{z7,y?, 2z}, {y'!, 2z, 21°}}. (In this case, there exists
a curve C with C? = 0 and C.E = 1. This ideal [ is not a prime ideal.) Applying
our criteria, we prove that R, (I) is Noetherian if and only if the characteristic of
K is 2 or 3.

1. INTRODUCTION

For pairwise coprime positive integers a, b and ¢, let p be the defining ideal of
the space monomial curve (7, 7% T¢) in K*, where K is a field. The ideal p is
generated by at most three binomials in K|x,y, z] (Herzog [13]). The symbolic Rees
rings of space monomial primes are deeply studied by many authors. Huneke [14] and
Cutkosky [2] developed criteria for finite generation of such rings. In 1994, Goto-
Nishida-Watanabe [10] first found examples of infinitely generated symbolic Rees
rings of space monomial primes. Recently, using toric geometry, Gonzélez-Karu [5]
found some sufficient conditions for the symbolic Rees rings of space monomial
primes to be infinitely generated.

Cutkosky [2] found the geometric meaning of the symbolic Rees rings of space
monomial primes. Let P(a, b, c) be the weighted projective surface with weight a, b,
c. Let Y be the blow-up at a point in the open orbit of the toric variety P(a, b, c).
Then the Cox ring of Y is isomorphic to the extended symbolic Rees ring of the
space monomial prime p. Therefore the symbolic Rees ring of the space monomial
prime p is finitely generated if and only if the Cox ring of Y is finitely generated,
that is, Y is a Mori dream space. A curve C on Y is called a negative curve if
C? < 0 and C is different from the exceptional curve E. Cutkosky [2] proved that
the symbolic Rees ring of the space monomial prime p is finitely generated if and
only if the following two conditions are satisfied:
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(1) There exists a curve C such that C? <0 and C # E.!
(2) There exists a curve F' on Y such that C N F = (.

In the case of ch(K) > 0, Cutkosky [2] proved that the symbolic Rees ring is
Noetherian if there exists a negative curve. In the case of ch(K) = 0, Inagawa-
Kurano [15] developed a very simple criterion for finite generation in the case where
a minimal generator of p defines a negative curve C, i.e., C.E = 1. Examples that
have a negative curve C' with C.E > 2 are studied in Gonzalez-AnayaGonzalez-
Karu [6], [7] and Kurano-Nishida [18].

The existence of negative curves is a very difficult and important problem, that
is deeply related to Nagata’s conjecture (Proposition 5.2 in Cutkosky-Kurano [3],
Remark 2.2 (4)) and the rationality of Seshadri constant. The existence of negative
curves is studied in Gonzalez-AnayaGonzalez-Karu [8], [9], Kurano-Matsuoka [17]
and Kurano [16].

In the case of ch(K) > 0, we do not know any example such that R(p) is infinitely
generated.

In this paper, we shall discuss finite generation in a slightly broader situation
than that of the symbolic Rees ring of the defining ideal of a space monomial curve.
Now, we set up the situation dealt with in this paper and describe our results.

Let A be a triangle with three vertices (xq, uzs), (z1,uz1), (0,1)

(0,1)

(11) (xl,ﬂxl)
where z1 and x5 are rational numbers such that o < 0 <z, W := 21 — 29 > 0.
Let 3, t, w be the slopes of each edges, that is, 5 = m%;l and t = mml_;l We assume
—0<t<-1<u<0<s5< 0.

Let K be a field and X be the toric variety determined by A, that is, X =
Proj E(A) where

(1.2) E(A) = P rvw’ | T C Kt wt T
n>0 \ (o,B8)EnANZ2
is the Ehrhart ring of A. Here v, w, t are indeterminates. Let 7 : Y — X be the
blow-up of X at e = (1,1), where e is the point corresponging to the prime ideal
EA)N (v—1,w— 1)K w T].
Let E be the exceptional divisor. Let C' be the proper transform of the curve of
X defined by (w — 1)T in E(A). Then C is linearly equivalent to 7*A — E and we

Hf \abe ¢ Q, this curve satisfies C2 < 0, that is, C' is a negative curve.



INFINITELY GENERATED SYMBOLIC REES RINGS 3

have

C*=2|Al-1=W —1.
Here remark that C' is isomorphic to PL. Let us(> 0) and u(> 0) be integers such
that © = —ug/u and (ug,u) = 1. Let A’ be the triangle with three vertices (0, 0),
(u, —ug), (—uws/(x1 — 2), (U + ugwa) /(1 — x2)).

(—uxe /(1 — x2), (U + ugxs) /(1 — 3))

(1.3) (u, —u)

Remark that the slopes of edges of A’ are 5, t, u. We denote the Weil divisor
7 A" —uE by D. Then we have C.D = 0.

For a positive integer n, we think nC' as a closed subscheme of Y defined by
Oy (—nC). We define the Cox ring of Y by

Cox(Y) = D H(Y,0y(D)).

DeCl(Y)

Even if CI(Y') has a torsion, we can define a ring structure on Cox(Y') in this case.
We shall prove the following three theorems in Section 3.

Theorem 1.1. Let K be a field. Let A, ', W, X, Y, C, D, 5, t, u, up, u be as
above. Assume 0 < W < 1. Then the following conditions are equivalent:

(A0) Cox(Y') is finitely generated over K.

(A1) There exists a curve F on'Y such that F N C = {).

(A2) There exists a positive integer m such that Oy (mD)|wc ~ O for any posi-
tive integer (.

(A3) There exists a positive integer m such that Oy (mD)|nmuc =~ Onuc-

(A4) There ezists a positive integer m such that ™ (€ (F,)*) is written as a
product of elements of Ay and Y(B,)™.

We refer the reader to Section 2 for definition of &, F., Amu and ¥(B,).

If (A1) is satisfied, F' is numerically equivalent to mD for some positive integer
m.

For:=1,2,...,u, we put

m; =7 {(a,8) € A'NZ | o =i}
Note that m; > 1 for all i = 1,2,...,u. We sort the sequence my, msy, ..., m, into

ascending order
m'lﬁm’QS---<m'

— u*
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We say that A’ satisfies the EMU condition if

m; > i
fori=1,2,...,u.

Theorem 1.2. Let K be a field of characteristic 0. Let A, A", W, X, Y, C, D,
5, 1, W, up, u be as above. Assume 0 < W < 1. Then the following conditions are
equivalent:

(BO) Cox(Y) s finitely generated over K.
(B2) ¢ (€ (F,)*) is written as a product of elements of A, and ¥(B,)” .
(B3) A’ satisfies the EMU condition.

Theorem 1.3. Let K be a field of characteristic p, where p is a prime number. Let
AN, W, X,Y,C, D, s, t,u, us, u be as above.
(1) If 0 < W < 1, then Cox(Y') is finitely generated over K.
(2) Assume W = 1. Let o be the minimal positive integer such that three vertices
of A are lattice points. Then the following conditions are equivalent:
(C0) Cox(Y) is finitely generated over K.
(C1) There exists a non-negative integer r such that Oy (op"C)|oprc = Oppre-
(C2) There exists a non-negative integer r such that Oy (—op™C)|ppre =~
Ospre-
(C3) There exist a non-negative integer r and a positive integer j such that j
is not divided by p and H(Oy (—cjp"C)|sprc) # 0.
(C4) There exists a non-negative integer r such that H*(Oy (—op™C)|oprc) #
0.

Here, in the case W =1, ¢C is rationally equivalent to (o/u)D.
We shall prove the following examples in Section 4.

Example 1.4. Let g be a rational number such that 2 < g < 3. Let A be a
triangle with three vertices (g — 3,%2), (g — 2,%%), (0,1). This triangle satisfies
the condition in (1.1). In this example, W = 1 is satisfied.
(1) Assume that K is a field of characteristic 0. Then Cox(Y) is finitely gener-
ated over K if and only if % <g< %.
(2) Assume that K is a field of characteristic p, where p is a prime number.
(i) If £ < g < 3, then Cox(Y) is finitely generated over K.
(ii) Sfuppose g= %. Then Cox(Y) is finitely generated over K if and only
iftp=2or3.

In the case g = 13/6 in the above example, we know that Cox(Y') is isomorphic to
the extended symbolic Rees ring R.(I) where I is an ideal of K|x,y, z] of the form

,I'? 2 z
1=12<y11§ 0 )

Here, the above ideal is not a prime ideal.
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Remark that Sannai-Tanaka [21] constructed examples of prime ideals I such that
symbolic Rees rings are not finitely generated over finite fields.

Remark 1.5. Assume that A satisfies W = 1. If [ is a prime ideal, then we can
prove that I is the defining ideal of the space monomial curve (71, T, T?), that is,
Therefore, if W = 1, there does not exist infinitely generated R, (/) such that [
is a space monomial prime ideal.
Gonzélez-AnayaGonzélez-Karu [9] found examples of triangles such that Y does
not have a curve C' such that C? < 0 and C' # E in the case ch(K) = 0. In this
example, W is a square of a rational number.

2. PRELIMINARIES

Let A be the triangle in (1.1). Let sq, s3, t3, t, us, u be non-negative integers
such that 5 = 32, = —%, U= —"2 (s2,53) = (t,t3) = (uz,u) = 1. (Here we put
sy =1 and s3 =0 if 5 = oo. Similarly we put t =1 and t3 =0 if { = —0c0.)

Put a = (s9,—83), b = (—t, —t3), ¢ = (ug,u). They are normal vectors of each
edges of A. Let a, b, ¢ be pairwise coprime positive integers such that aa + bb +
cc = 0. Let K be a field and X be the toric variety determined by A, that is,
X = Proj E(A) where E(A) is the Ehrhart ring of A as in (1.2). We have the

following diagram such that the horizontal sequence is exact:

Y/
a
T Nbo b
(2.1) c
0 +— CIX) <«+— Z° <«— 7 +— 0
/I\
Ny

Here CI(X) is the divisor class group of X. Take the semigroup rings of semigroups
in the above diagram.

K[T*] = K[Z]
) N,
K[CI(X)] <~ K[Z?

T
K[N()g] = K[‘T7 Y, Z]

The map ¢ : K[z,y, 2] — K[T*!] is given by ¢u(z) = T, ¥u(y) = T° and ¥u(z) =
T¢, that is, the kernel of v is the defining ideal of the space monominal curve
(T°, T, T°).

If the order of the torion subgroup of Cl(X) is d, then Cl(X) is isomorphic to
Z @ Z/dZ. Therefore K[CI(X)] is isomorphic to K[T*',U]/(U¢ —1). Put I =
Ker(et). Then we know

(2.2) I is a prime ideal <= CI(X) is torsion-free <= Za + Zb + Zc = Z°.
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Here suppose K = C. We define ¢y : C[T*',U]/(U¢—1) — C[T*] by ¢&(T) =T
and ¢ (U) = €27/ for k € Z. Then we have
I = Ker(pe) = (p0)71(0) = (pr) M (MZoKer(¢r)) = NiZgKer(gro0).
Here remark that each Ker(¢ypt) is a prime ideal of C[z,y, 2] for each k.

Definition 2.1. Let A be a commutative Noetherian ring. Let J be an ideal of A

with minimal prime ideals P, P, ..., P;. We define the nth symbolic power of J
by

J® =nd (J'Ap, N A).
We define
R(J) = ®ps0J™WT" C A[T]
and call it the symbolic Rees ring of J. We put

R,(J) = Ry(J)[T™"] € A[T*]

and call it the extended symbolic Rees ring of J.

Let 7 : Y — X be the blow-up of X at e = (1,1), where e is the point corre-
sponging to the prime ideal E(A) N (v — 1,w — 1)Ko= w® T,
Let E be the exceptional divisor of 7.

Remark 2.2. (1) Let A be a triangle such that three vertices are rational
points. Then there exist M € GL(2,Z), r € Qs¢ and f € Q? such that
A = rMA + f, where A is a triangle as in (1.1). For the proof, we use a
method in Herzong [13]. We do not prove this result here since we do not
need it in this paper.
(2) We put t; =t —t3 and u; = u — uy. Since % > 1and %2 <1, t; and u; are
non-negative integers. Then we have

2oyt g + ¢ t1+t + t
I — [2 ytl - — (xSQ 83 __ Y lzul,y 1103 __ ZU2x52’Zu1 u2 xssy 3).

We give an outline of the proof of it here.
We put J = (52153 —ylizun glitls _ juzgsz suituz _ gssyls)  We know zyz

is a non-zero divisor of S/.J since S/J is a 1-dimensional Cohen-Macaulay
ring by Hilbert-Burch theorem. Therefore we have

K[No’]/J = (K[No’]/J)[(wyz) "] = K[2°)/ TK[Z].

Next we shall prove K[Z3|/JK[Z3] = K[CI(X)]. Thus J coincides with
Ker(pt).
(3) We know

Cox(Y) = R.(I)

S
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by (2.8) in [16]. It is well-known that R/ (I) is Noetherian iff so is Rs({).
Therefore Y is a Mori dream space if and only if R,([) is finitely generated
over K .2

Let g1, ..., g, be independent generic points in P4. Suppose that n > 10.
Nagata conjectured that, if a plane curve of degree d passes through each ¢;
with multiplicity at least 7, then d > y/nr. Nagata [20] solved it affirmatively
when n is a square.

In the case where [ is a space monomial prime ideal, the existence of
negative curves is a very difficult and important problem, that is deeply
related to Nagata’s conjecture (Proposition 5.2 in Cutkosky-Kurano [3]) and
the rationality of Seshadri constant.

Even if I is not a prime ideal, our problem is also deeply related to Nagata’s
conjecture as follows; If Y does not have a curve C' with C? < 0 except for
E, Nagata’s conjecture is true for n = abcd.

Suppose that W is not a square of a rational number. Under this condition,
Y does not have a curve C' with C? = 0. Assume that the characteristic of
K is positive and Cox(Y') is not Noetherian.® Then there does not exists a
curve C such that C? < 0 and C # E. Hence Nagata’s conjecture is true for
n = abcd.

In the rest of this section, let us recall a method in [15].

(2.3)

2Remark that following conditions are equivalent: (1) R4(I) is finitely generated over K, (2)
(

Rs(I) is Noetherian, (3) R.(I) is finitely generated over K,

) R.(I) is Noetherian, (5) Cox(Y) is

finitely generated over K, (6) Cox(Y') is Noetherian.
3We shall give an example such that the characteristic of K is positive and Cox(Y") is not
Noetherian in Example 1.4 (2). However, in our example, W = 1 and there exists a curve C' with

C?=0.
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Let S and T be the cones in R? defined by

S = RZQ(U, —Ug) + RZO(S& 32)7
T = RZO(_U7 UQ) + RZO(_t& t)

Z

u

O

Let Z be the cone R(u, —uy) + R>((0,1) as above. Let v and w are indeterminates
over K. Put

Here remark

w=1—x+vx.

Put
K|Z) = @ Kvow® ¢ Kt w*!],
(a,B8)€ZNZ2
F = K[Z][z] ¢ K[v*",w™, » i 1],
(2.4) Topm = 0w g™ € F

for « € Z and n € Zso, where [au] is the least integer bigger than or equal to
atu. We refer the reader to Remark 4.3 in [15] for the product =4, . Then by
Proposition 4.1 in [15], we have

F=@P P Kran

a€Z n>0

(2.5) 'F =P P Kzan

a€Z n>t

Put

(2.6)  zam =0 w! @V (g 422 423 4 ) =2V f g 422 )"
=T ! O] g g2 4 € Fa'F
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as in [15]. We refer the reader to (4.15) in [15] for the relation between z,, and

Ton- We put
Fé = F/.TEF = @ @ K-Toz,na
Qa€Z £>n>0
Ag:@ @ Kxa,n C FE;
az0 £>n>0

(o, [ow] +n) € S

Y(By) =P & Kzyn C F

a€Z £>n>0
(e =n,[(a=n)ul+n) €T

as in (4.16) and (4.17) in [15]. Remark that both A, and ¢(By) are subrings of Fj.
Let C be the proper transform of the curve of X defined by (w — 1)7T" in E(A) (see
(1.2)). Then we know that Spec A, and Spec 1)(By) are affine open sets of /C' such
that ¢C' = Spec A, U Spec ¢(By) and Spec F;, = Spec Ay N Specp(By). Put
E=1—-2)"(1—2+vx) " e F/.

Then ¢ is the transition function of the line bundle O(D)|sc as in (4.18) in [15].
For integers satisfying 0 < m < ¢, we put

F(m,0) = 2™F/z'F = GB GB Koy

a>0 >n>m
A(m, ) = P B Ko, C F(m,0),
a>0 >n>m

(o, [aTw] +n) € S

B(m,t) = EB EB Kzo, C F(m,?).

a€Z {>n>m
(a=n,[(a—n)u]l+n) €T

Remark that A(m, ) and B(m,{) are ideals of A, and ¢ (By), respectively.

3. PROOF OF THEOREMS

Proof of Theorem 1.1. The equivalence of (A0), (A1), (A2), (A3) are given in
Theorem 3.1 and Theorem 3.2 in [15] in the case where I is a prime ideal (see (2.2)).
We can prove the equivalence of them in the same way.

Next we shall prove the equivalence of (A3) and (A4). We shall show the following
claim:

Claim 3.1. Let m be a positive integer. Then the following conditions are equivalent:
(A4), ™ (€ (Fou)™) is written as a product of elements of Ay and (By.,)™.

Here we shall give an outline of the proof. We know that Spec A4,,, and
Spec ¥ (By,,) are affine open sets of muC' such that muC' = Spec A, USpec ¥(Byu)
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and Spec F,,, = Spec A, N Spec (B, ). Remark that Oy (mD)|nuc is a line bun-
dle for any m such that Oy (mD)|spec Ay, a0 Oy (MD)|spec(B,n,) are free. Then
€™ is the transition function of O(mD)|uc as in (4.18) in [15]. Thus we know that
(A3),, is equivalent to (A4), .

We have completed the proof of Theorem 1.1. O

Proof of Theorem 1.2. (B1) is equivalent to (B2) by Claim 3.1.

By Theorem 1.1, (B1) implies (B0). If the condition (A4), in Claim 3.1 is satisfied
for some m > 0, then (A4), holds in the case where the characteristic of the field
K is 0 as in Proposition 5.9 in [15]. Thus (B0) implies (B2) by Theorem 1.1 and
Claim 3.1. (In the case where W < 1, we can prove that (B0) implies (B1) in the
same way as in Theorem 1.1 in Kurano-Nishida [16]. However this method does not
work in the case where W = 1.)

The equivalence of (B2) and (B3) can be proved in the same way as in Theorem 1.2
in [15]. O

Proof of Theorem 1.3. One can prove (1) in the same way as Cutkosky [2].
Now we shall prove (2). In the rest of this paper, assume

W=x1—x9=1.

In proving this theorem, we referred to Totaro’s method [22] of constructing nef and
non semi-ample divisors on a smooth surface over a finite field.

Remark that Oy (cC) is a line bundle over Y by the definition of o. It is obvious
that (C1) is equivalent to (C2).

Since o is the width of 0A, ¢ is a multiple of u. (Remember that the slope of the
bottom edge of A is —%2 and (u,ug) = 1.) We know

(oc/u)D ~ oC.

By Theorem 1.1, (C1) implies (CO).

In order to show that (CO) implies (C1), we shall prove that the condition (A2) in
Theorem 1.1 implies (C1) in the case where the characteristic of the field K is a prime
number p. Assume the condition (A2) is satisfied. Let » > 0 and j > 0 be integers
satisfying m = jp” and (p,j) = 1. Then we know that Oy (jp"D)|wc ~ Oyc for any
positive integer £. Therefore we have Oy (ojp"C)|ic ~ Oy ((0/u)jp"D)|ec >~ Oyc for
any positive integer ¢. Putting ¢ = op” we have Oy (0jp"C)|oprc = Oppre. Then

)
(3.1) the order of Oy (op"C)|spre (in Pic(op™C)) divides j.
On the other hand, without assuming (A2), we obtain
(3.2) the order of Oy (op"C)|spre (in Pic(op™C)) is a power of p
as follows. Consider the sequence of the natural maps

Pic(op"C) — Pic((op” — 1)C') — Pic((op” — 2)C') — --- — Pic(C) = Z.
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The image of Oy (op"C)|ypre is Oy (ap™C)|c in Pic(C). It is O¢ since C? = 0 and
C ~ P}.. By the exact sequence

0 — Oy (kC)/Oy((k+1)C) — O 1yc — Ope — 1,

we have an exact sequence
HY(Oy (kC)/Oy((k +1)C)) — Pic((k + 1)C) — Pic(kO)

for k > 1. Therefore each element in the kernel of Pic((k + 1)C) — Pic(kC') vanishi
by p. Consequently (3.2) holds. By (3.1) and (3.2) we know Oy (6p"C)|pprc = Ogpre.

The implications (C2) = (C4) = (C3) are obvious.

In the rest of this section we shall prove (C3) = (C2).

Remark that Oy (nC')/Oy((n — 1)C) is a line bundle over C' since both Oy (nC)
and Oy ((n — 1)C) are locally reflexive modules. Then the following are satisfied.

Lemma 3.2. Let n be an integer.
(1) Oy (nC)/Oy((n —1)C) is periodic with period o.
(2) We have Oy (nC)/Oy((n —1)C) = Opy_if o divides n.
(3) We have H°(Oy(nC)/Oy((n —1)C)) =0 if o does not divide n.

We shall prove this lemma after completing the proof of Theorem 1.3.

Let m be an integer. By the above lemma we have exact sequences
0 = H°(Oy ((em—n+1)C) /Oy ((em—n)C)) — H*(Oy(omC)|nc) — H*(Oy (omC)|m-1)c)
forn =2,3,...,0. Thus we know that the natural map
(3.3) H°(Oy(omC)|,c) — H°(Oy(omC)|c) is injective.
Assume that (C3) is satisfied.
First assume r» = 0. Then we have the injection
0 £ H(Oy(~0jC) o) = H(Oy(~0jC)|c) = H(Op ) = K

as in (3.3) (see Lemma 3.2). Therefore the non-zero section in H°(Oy(—ajC)|,c)
does not vanish at any point of C. Thus we have Oy (—cjC)|,c = Oy¢ and the order
of Oy (—0C)|sc divides j. Then, by (3.2), we know that the order of Oy (—0cC)|,c
is a power of p. Hence the order is one and Oy (—0C)|,c = O,c.

Next assume r > 0. We may assume that

(3.4) H(Oy (=0j'p" C)|ypre) = 0

for any integer ' such that 0 < ' < r and any positive integer j* which is not
divided by p. Consider the map

H(Oy (=0jp" C)|oprc) — H(Oy(=0ajp"C)|c).
It is the composite map of
(3.5) H*(Oy (=0jp" O)oprc) — H(Oy (=0jp"C)lgpri-10)
forry =1,2,...,r and

H(Oy(=0jp C)|oc) — H*(Oy(=0jp C)le).
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The last map is injective by (3.3). The map (3.5) is the composition of
H(Oy(=0jp"CO)opippri—rc) — H(Oy (=0jp"C)|o(pi-1ypri-1c)

fori=0,1,2,...,p — 2. The kernel of the above map is

O (Oy(—ajp”(? —o(p—i— 1)19”‘10))
Oy (—ojpC —o(p —i)p—1C)
— (OY<—0<-7P“"“ —ptit 1)19”_10))
Oy (=o(jpr—tt = p+i)pm='C)
=H(Oy(—o(ip" " —p+i+ 1)p" 7 'O)|gpri-10) = 0

since 1 — 1 < r (see (3.4)). Therefore (3.5) is injective for r = 1,2,...,r. Thus we
obtain the injection

0# H(Oy(=ajp C)|oprc) — HY(Oy(—ajp O)|c) = HO(OP}() =K.

Therefore any non-zero section in H°(Oy(—0jp"C)|sprc) does not vanish at any

point of C. Thus we have Oy (—0jp"C)|sprc = Ogpre and the order of Oy (—op"C)|ppre

divides j. Then, by (3.2), we know the order is one and Oy (—op"C)|oprc = Oppre.
We have completed the proof of Theorem 1.3. 0

Proof of Lemma 3.2. Remember the cones S and T in (2.3). We define

a; =" {(a,) € SNZ* | a =1}

(3.6) b =% {(o, ) € TNZ?| o = i}.

By definition, we have

e 2>2b32>2b oy >2b 120 >0<ap<ag<ay<az <

Remark that ag =a; =+ =o0 if s=o00,and by =b_; = --- = 00 if t = —00.
We put
- 2 OéZOanZOa _ 2 0520,7120,

— 2
Pg = {(a,n)EZ b >nt 1

?ae_zﬁ, i i)’n)m +n)eT } - {(a’ ner

a€Z, n>0, }
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(0,0)
Put
(3.7) 0= 2% =—xy0 and 0 = ;7% =10.

Then 6 and #" are non-negative integers such that o = 6 + ¢'.

Claim 3.3. (1) PN Pg = {m(0,0) | m € Ny}, where Ny denotes the set of
non-negative integers.
(2) For a € Z and n € Ny, (a,n) € Pa if and only if (« +0,n+ o) € Py.
(3) Fora € Z and n € Ny, (a,n) € Pg if and only if (a+60,n+ o) € Pp.

First we shall prove (2). If s = 0o, then §# = 0 and ap = a; = - - - = oo. In this case,
Py = {(a,n) | a,n € No}. The assertion is obvious in this case. Assume 3 < 0.
Remark that (0,uf) and (0,3560) are lattice points and s = wf + o. Therefore, for
any ¢ € Ny, we have
(38) a;+p = A5 + 0.

For ao € Ny and n € N,
(yn) e Py ag>n+l1eap>n+1+o0s (a+0,n+0) € Py.
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For aw < 0 and n € Ny, then (o, n) and (a + 0, n + o) are not in Py.
Next we prove (3). Put

Py = {(a,n) € 72

a<0, n>0,
(a, [ou] +n) € }

By the same way as in (2), we can prove that, for a € Z and n € Ny, (a,n) € Pj if
and only if (&« — ¢',n+ o) € Pj. Then, for o € Z and n € Ny,

(a,n)e P (a—nn)ePys (a—n—0,n+o0) e Pys (a+60,n+0) € Pg.

Now we start to prove (1). Suppose (a,n) € P4 N Pg. By (2) and (3), we may
assume 0 < n < o. Since (a,n) € P4, we know a > 0, a, > n+1. Since (o, n) € Pg,
we have b,_, > n + 1. Therefore we know o« —n < 0. Put yy = n —a > 0 and
ys = —a < 0. Consider the triangle A such that the slopes of edges are 3, ¢, 7,
respectively, and (y1,Ty1), (v, Uy2) are the endpoints of the bottom edge as below.

(y1,Ty1)

Since aq > n + 1 and b,_, > n + 1, the point (0,n) is contained in A. Since the
area of A is n?/2, the point (0,n) is a vertex of A. Then we know that (y;,7y;) and
(y2,uys) are lattice points. Then o divides n. Thus we obtain n = a = 0. We have
completed the proof of Claim 3.3.

Let’s go back to the proof of Lemma 3.2. Assume n = —q¢ < 0. We have
(¢ + 1)C = Spec Ay41 U Spec)(B,11) and Spec Fyp1 = Spec Ay N Specy)(By11)-
Then we have

Oy (—qC)
C] q + 1 Kxa ’
Oy(—(g+1)C) SpeCFq+1 aeeé !
Oy (—¢C)
:Aq,q_i—l: K.I'a7CFq,q+1,
OY( (q+ 1)0) Spec Ag41 ( ) (Q%PA ' ( )

=B(¢,q+1) = @ Kzo, C F(q,q+1).
Spec t(Bg+1) (,q)EPB
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Here remark that z,, = 24, in F'(¢,q¢ + 1) by (4.15) in [15]. Thus we know

Oy (—qC
0 y\{—q _
# (o ta) = | @ K)o | @ Keu .

OY (avq)EPA (avq)ePB
Hl ( OY ) — @aEZ Kxayq
Oy (

(®(O¢,q)€PA Kx@v‘]) + <®(Oé7q)€PB KfBO@Q)
Therefore we know

H (Oy?—yéq_ f?)())) B { ]o( Ei)ftﬁlcr]z;ise)

by Claim 3.3. We have proved (2) and (3) in Lemma 3.2 in the case n < 0.
Recall that Oy(—cC) is a line bundle over Y such that Oy(—oC)|c =~ Op.

Therefore, for any n € Z, we have

Oy ((n — 0)C) = Oy (nC) @0, Oy(—C)

(—=qC)
(¢+1)
(—=qC)
(¢+1)0)

and
Oy((n—0)C)  Oy(nC)
(=0 —1)0) ~ Ov(n—-1)0) o Or(=o0)
. Oy(nC) ~ (’)y(n(])
“0r(n-10) 2o e = o —10)
by (2). We have completed the proof of Lemma 3.2. O

4. EXAMPLES

We shall prove (1) and (2) in Example 1.4 in this section.
Let A, be the triangle with three vertices (1,0), (0,0), (g,4). By the affine

transformation % ( _12 (1) ) ( z ) + ( gg;_g2 ), Ay is transformed to the triangle
2

A with three vertices (g — 3, 3—79)’ (g — 2, 2%9), (0,1). Remark that if 2 < g < 3,

then A satisfies the conditions in (1.1). In this case the triangle A’ in (1.3) has three

vertices (0,0), (2,—1), (6 —2g,9 — 1).

First we shall prove (1) in Example 1.4. We apply Theorem 1.2 here. Checking
the EMU condition, we know that Cox(Y) is Noetherian if and only if the point (1, 1)
is in A’. By an easy calculation we know that it is equivalent to 7/3 < g < 8/3.

Next we shall prove (2) in Example 1.4.

Fix a triangle satisfying (1.1). We have C1(Y') = C1(X) ®Z, and it is independent
of the base field K (see (2.1)). For a Weil divisor F' on Y, let h°(F)g denotes
the dimension of H°(Y,Oy(F)) in the case where the base field is K. It is easy
to see that h°(F)g depends only on the characteristic of K. This fact implies
that finite generation depends only on the characteristic of K. It is easy to check
hO(F)g, > h°(F)q for any prime number p. Using this inequality, we obtain that,
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if Cox(Y') is finitely generated in the case where the base field is of characteristic 0,
so is for any base field K. The assertion (2) (i) follows from this.

In the rest of this paper, we shall prove (2) (ii) in Example 1.4. Suppose g = %
Then A is the triangle with three vertices (=2, 3), (3, —15), (0,1).

(0,1)

NG
11
(4.1) 0,0) (5 —13)
In this case, ; = g, 2:%5,u:2,u2:1,fz_73,6271,§zm (1.1).
In this case, (a,b,c) = (1,1,6) and d = 24. We know ¢ = 12 in Theorem 1.3, and

6 =10 and ¢ =2 in (3. ) The sequences in (3.6) are

ap=1,a1=1,a,=3,a3=4,a, =05, a5=6, a5 =28, a7 =8, ag =10, ag = 11, a1 =13, ...

and

bp=1, by =6, b_y =13,
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Here we have a;1190 = a; + 12 for ¢ > 0 as in (3.8) and b_; 5 = b_; + 12 for i > 0.
The sets P4 and Pg are the following:

(4.2)
pra prd
) . ©
» =
- &
’ o)
PB » O
Y » PA
KA
iz
O
©
—5 (0,0 5 10 15 20

The set {(o,n) | @ € Z} in the above picture corresponds to a K-basis of F'(n,n+
1). The set {(a,n) € P4 | @ € Z} corresponds to a K-basis of A(n,n + 1). The set
{(a,n) € Pp | o € Z} corresponds to a K-basis of B(n,n + 1).

[I] First suppose ch(K) = 2. We shall show that the condition (A4) in Theorem 1.1
is satisfied with m = 2. We have

§2 = (]_ — I)4(1 — T+ ’U:L‘)_Q = (1 — I074)(1 — Tp,2 + (I’l’l)z)_l =1+ Zo,2 — (ILl)Z
in Fy. Here remark that (¢'F)(2/F) = 2'%F, z,, € 2"F by (2.5). We know
F(2,4) = A(2,4) + B(2,4) by (4.2). Take f4 € A(2,4) and fp € B(2,4) such that
Too — (.27171)2 = fA + fB- Then we know 1 + fA € AZ, 1+ fB < w(B4)X and

(L4 fa)A+ f) =14 fa+ fe=1+z02 — (21,1)°
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in Fy. Thus the condition (A4) in Theorem 1.1 is satisfied with m = 2. We know
that Cox(Y) is Noetherian by Theorem 1.1.

[ITI] Next suppose ch(K') = 3. We shall show that the condition (A4) in Theorem 1.1
is satisfied with m = 3. We have
E=1-2)1—-a+vr)?=(1—-203)*1 — 703+ (211)*) 7"
=(1 —2x03)(1 + 203 — (£11)") = 1 — 203 — (21,1)°
in Fs. We have F(3,6) = A(3,6) + B(3,6) by (4.2). Take f), € A(3,6) and fj €
B(3,6) such that —zq3 — (211)* = fy + f5. Then we know 1+ f, € AF, 1+ fp €
(Bg)* and
L+ fDA+ fp) =1+ fa+ f=1- 203 — (21.)°

in Fg. Therefore the condition (A4) in Theorem 1.1 is satisfied with m = 3. We
know that Cox(Y") is Noetherian by Theorem 1.1.

[III] Assume that the characteristic of K is p, where p is a prime number such that
p > 5. In the rest of this paper, we shall prove that Cox(Y) is not Noetherian. It is
enough to show that the condition (C3) in Theorem 1.3 is not satisfied, that is, we
want to show

H°(Oy (—0jp"C)|sprc) = 0 for any non-negative integer r

(4.3) and a positive integer j such that (j,p) = 1.

Let x(F) denotes the Euler characteristic of a coherent sheaf F over nC| that is,
X(F) = dimg H*(F) — dimgx H'(F).
By Claim 3.3 and (4.2), we know
Op1_ (n=0 mod 12)
Oy (—nC)/Oy(=(n+1)C) ~ ¢ Op (-2) (n=1,6,8 mod 12)
Op1 (—1) (otherwise).
Therefore we have

1 (n=0 mod 12)
X(Oy(—nC) /Oy (—(n+1)C)) ~< -1 (n=1,6,8 mod 12)
0 (otherwise).

Since y is an additive function for short exact sequences, we know
(4.4) X(Oy (=0jp"C)loprc) = —2p".
Put

@d = T10d+1,12d+1, @d = T10d+5,12d+6> @d = X10d+7,12d+8
and

Cpr,j = {@d ‘ 1: 172737 d:jpra.jpr + 177(]+ 1>p1“ - 1}
By the exact sequence

0—A(ejp" o (j+1)p")+B(ojp" .0 (j+1)p")—F(ojp" .0 (j+1)p")—H' (Oy (—=0jp" C)|oprc)—0,
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Cyr j spans H'(Oy (—ojp"C)|sprc) as a K-vector space.
We define the subset D, ; of Cr ; as

DPTJ = {Ia’n S CPT:]‘ | fL’a,n = O HlOdUIO A(O-jpra n + 1) + B(O'jpT7 n + 1) iIl F<O-jpr7n + 1)} .
Lemma 4.1. The set Cyr j \ Dy is a K-basis of H(Oy (—cjp"C)|oprc)-

Proof. First we shall prove that Cpr; \ Dy ; spans HY(Oy(—ajp"C)|oprc) as a K-

vector space. Let < Cyr j\ D,r j >k be the K-vector subspace of F'(ojp”,o(j+1)p")

spanned by Cpr ; \ D,r ;. We shall prove

(4.5)

A(ojp”,o(j+1)p")+B(ojp”, o(j+1)p")+< Cpr j\Dpr > +F(n,o(j+1)p") = F(ojp",o(j+1)p")

for n = ojp",o5p" + 1,...,0(j + 1)p" by induction on n. It is obvious in the case
n = ojp". It is enough to show

Alojp", o (j+1)p")+B(ojp", o (j+1)p")+< Cpr j\Dprj > +F (n+1,0(j+1)p") D F(n, o (j+1)p")

for n = ojp”,oip" +1,...,0(j + 1)p” — 1. We have only to show that each z,,

(o € Z) is contained in the left-hand side. If (a,n) € P4, then z,, is contained in
A(ojgp™,o(j +1)p"). If (a,n) € Pg, then x,,, is contained in B(ojp",o(j + 1)p") +
F(n+1,0(j+1)p") by (4.15) in [15]. If 2o, € Cprj \ Dypr j, then z,,, is contained

in <Cpr;\ Dprj>k. If o, € Dy, then z,, is contained in the left-hand side by
definition of D, ;. Therefore (4.5) is satisfied for n = o(j +1)p”. Hence Cpr ; \ Dyr ;
spans H*(Oy (—cjp"C)|,prc) as a K-vector space.

Next we shall prove that Cyr ;\ D,r ; are linearly independent in H'(Oy (—ojp"C)|sprc).

Assume the contrary. There exist Taqnys Tasngs «- -5 Tagme € Cprj \ Dprj and
c1,y...,cp € K\ {0} such that

CiTarm T C2Tagms T+ CkTaymy, = 0

in H(Oy(—0jp"C)|oprc). Suppose ny < ng < --- < ng. Then we obtain 4, ,, €
D, ;. It is a contradiction. O

Remark 4.2. Remark #C) ; = 3p".
Here assume # D, ; > p". Then we know

dim g H1(0Y<_Ujprc)‘oprc) <2p

by Lemma 4.1. On the other hand we know its Euler characteristic (4.4). Therefore
we have # D,r ; = p", dimy H'(Oy (—0jp"C)|pprc) = 2p" and HY(Oy (=0 jp"C)|oprc) =
0.

Therefore, in order to prove (4.3), it is enough to show

#D,r;j > p" for any non-negative integer r

(4.6) and a positive integer j such that (j,p) = 1.

In the rest of this paper, we shall prove (4.6) for each prime number p such that
p =5
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By (4.5) and (4.6) in [15], 4, and 2, , are contained in z"F'. By definition (2.4),
we know

Tanlao' n' = Tata! n+n!

if either o or ' is even. In particular, we have

m m
Tanl = $a,n($0,1) = Za,n+m-
By (2.6), we know
Ran?a’ ! = Ra+ao! n+n’

if either « — n or o/ — n’ is even. We have

Tan = Zan

in F(n,n+ 1) by (4.15) in [15]. We have
(4.7)

TarmiLasng =" Lagne = Lag+-+ag,ni++ne = Rai++ag,ni+-4ne — faingfaz,ng * - Rag,ng

in F(ny+--++ng,ny+---+ng + 1) by (4.8) in [15].
We have

(48) Z10k,12k = $10k712k§_6k where § = (1 — 13)2(1 — T+ Ux)_l
by definition (2.6).
Suppose that & is a positive integer such that (k,p) = 1. We have

210k,12k — T10k,12k = 3310k,12k(§_6k —1)
= 21oka26((1 — 2) 721 — 2 + v2)% — 1)
= Ilok’lzk(6kx + 6]€U.73)

= (6k)210k12k+1 + (6K)T1086+1,12641

modulo z'2*2F .

Here suppose jp" < k < (j+ 1)p". Remark that xix 126 € A(125p", 12k 4 2), and
Z10k12k, Z10k126+1 € B(127p", 12k +2). Recall that the characteristic of the base field
K is not 2 or 3. Since 6k # 0, we know that

(4.9) T10k,12VT = T10k+1,12k+1 = 0
modulo A(125p", 12k + 2) + B(125p", 12k + 2) in F(125p", 12k + 2). Thus we know
(4.10) D, isin Dy if jp" < k < (j+ 1)p" and (k,p) = 1.

The following lemma will be frequently used later.

Lemma 4.3. Let k be a positive integer.
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(1) Assume that o is even. Then

k—1
k+q—1 _ k+q o
xa,nwk = { ( 2% )(1 - l’)k qxa+2q,n+2q + <2q 41 (1 - I)k ! 1$a+2q+1,n+2q+1
(1 _ \k k oN\k-1
_(1 iL‘) Tamn + 1 (1 .ﬁIZ’) To+1n+1
k _ k+1 _
+ (2>(1-—aﬂk 1$a+1n+2+’< 5 >(1-—aﬂk *Lotsnts

k+1 _ k+2 -
+ ( 4 )(1 - l’)k 2xa+4,n+4 + ( 5 )(1 - x>k 3xa+5,n+5

k+2 _ kE+3 _
—I—( 6 )(1—$)k 3xa+6,n+6+( 7 )(1—&7)’f 4$a+7,n+7+---

(2) Assume that « is odd. Then

xa,nwk =(1-— x)kxa,n
-1
k+q _ k+q+1 o
+ { <2q 4 1) (1 - x)k? q$a+2q+17n+2q+1 + ( 2 + 2 (1 — x)k’ q 1£L’a+2q+27n+2q+2

—z)fz,

k E+1 _
+ (1> 11— $ «ra—i-l n+1 + < 2 >(1 - x)k lxa+2,n+2
( +

k+1 k+2 _
+ 3 ) 1 - JZ k lxa+3,n+3 + ( )(1 - x)k 21’04—&-4,71—}—4

??‘

ﬂ
o

4
k42 _ k43 _

T L R A [T R
Proof. First assume that « is even. By definition (2.4), we have

La+2q,n+29 — l’am(vl‘)qu—q, Ta+2g+1,n+2¢g+1 = Tan (Ux)QQHw q
Put

k+q—1

k+q—1 kit i (a1
a= 3 (e e,

1=2q

k -1 k
B, = < +2qq )(1 — 2)F 9 (vx) P <2q—:_q1) (1 —z) 7Y (pz)2at ™,

It is enough to show

T
I

(4.11) w” =Y B,

1
o
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We have

1=2q
k+q—1 k+q
—1 k —1
= Z <k+q )(1 2)F T (yg) ™ 4 Z ( ;—q . )(1 )Rt ()™
Z R
i=2q J=2¢+1
k+q
- k
:(k +2q 1)(1 x)" 9 (vx) w1 4 Z ( +q)(1 o) (pg) w1
q i=2q+1
k+q—1 . 9 — k+gq k—q—1(, 2
— 1 q q,,—4 1 q q+1, —q
( % )( x) 9 (vx) w9 + 2+ 1 ( ) (vx)* " w
k+q
k . .
+ Z ( ;',—q>(l — )T () e
i=2(q+1)
=B, + As1

since Ap_1 = By_1. We have proved (1).
Next assume that « is odd. By definition (2.4), we have

_ 2q,,— — 2¢+1, ,—q-1
Ta42q,n+2q = l’am(Ul') Tw q’ La+2q+1,n+2q+1 = xa,n<vx) w .

It is enough to show

k-1
1
+ { (k i ) (1 — o) (vz)? w7t 4 (k;(_](r; )(1 - f)k_q_l(m)%“w_q_l}
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2q' + 2
q 7 +
- k+q k+q
k— 2q+1 1 k—qg—1 2q+2 1
+ ;:0 <2q+1><1 )N vx) T w T + E <2q+1)(1—x) = (px) T w1
=(1—a)*
k—1 k—1
k kg1

+ ( +q)u 2)F (o) w1+ ( T )(1—:v)k_q_1(vx)2q+2w -1,

£ \2q+1 2o\ 2942

O

Remark that, by this lemma, we can rewite z,,w" into a K-linear combination
of Zgm’s since x5,,1° = Lm0

In the rest, we shall prove Example 1.4 (2) by dividing into some cases.
[ITI-1] Assume that p is 5. Taking pth power of the equation (4.9), we obtain

(108, 12602)P =0

modulo A(12kp, 12kp + 2p) + B(12kp, 12kp + 2p) in F(12kp, 12kp + 2p). We have

P _ 5 5,,-2.5 2
($10k,12kv$) = 96‘10kp,12kp(UI) = T10kp,12kp?V W T W

2 2 2 2.2
=T10kp+512kp+5(1 — T+ V8)* = Trokprs126p+5 (1 — 20 + 20z + 2° — 2vz° + v 27)
=X10kp+5,12kp+5 — 23710kp+5,12kp+6 + 23710kp+6,12kp+6

modulo z'?**7F. Since T10kp+5.12kp+55 T10kps6.12kpr6 € A(12kp, 12kp + 7), we have

T10kp+5,12kp+6 = 0

modulo A(12kp, 12kp + 7) + B(12kp, 12kp +7) in F(12kp, 12kp + 7). Taking p"~th
power of it for h > 0, we have

‘Tl()k:ph+5ph_1,12kph+6ph_l = O
modulo A(12kp", 12kp"+6p" 1 +1)+B(12kp", 12kp"+6p" 1 +1) in F(12kp", 12kp"+
6p"~1 + 1) by (4.7). Here remark

p

—1
10kp" + 5p"~1 =10 <k‘ph + "+ 1)) +5,

p—

12kp" + 6p"~t = 12 <k:p + =

1
— " 2+ph_3+-~-+p+1)) +6.
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Therefore we know
(4.12)
@ph ra(ph—21ph—3 1 pr1y 18 I Dyrj if 7> h >0, jp < kpt < (j + 1)p" and (k,p) = 1.

Then D, ; contains p" —p"~! elements of the form (I), as in (4.10) and p"~* elements
of the form (2), as in (4.12). Therefore D, ; contains at least p” elements. We know
that Cox(Y") is not Noetherian by (4.6).

[I11-2] Assume that p = 10f + 3, where f > 0. let k be a positive integer such that
(k,p) = 1. Put e = kp + f. First we shall prove

(4.13) T10e+5,12¢+6 = 0

modulo A(12kp, 12e + 7) + B(12kp,12e + 7) in F(12kp, 12e 4+ 7).
Taking the pth power of (4.9), we obtain

(4.14) T10kp, 126 (VT)”

=0
modulo A(12kp,12e + 7) + B(12kp, 12e + 7) in F(12kp, 12e + 7) since 12kp + 2p >
12(kp+ f) + 7= 12e + 7. We have

(4.15) T10kp12kp(VT)F = $10kp,12kpl’p,pw5f+1
=(1 = 2)  10mppaokprp + (5F + D1 = 2) 10k 1p11 19kp1p11
5f+2
+ ( 9 )(1 - $)5f$10kp+p+2,12kp+p+2 + -

by Lemma 4.3 (2). Here recall that z, ,2? = 24 ntq. If 24, appears in (4.15), (o, n)
safisfies

a>10kp+p
(4.16) { n > a+ 2kp

Remark that, if n > 10e + 7, then z,, = 0 in F(12kp, 12e + 7).

12e + 7

Fany
A4

12e 4+ 3

12kp+p

(4.17) 10kp +p
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Remark 10kp + p = 10e + 3. If (o, n) in the area (4.16) satisfies n < «a + 2e,
then La,n c A(le’p, 12e + 7) We know that T10e+3,12¢+55; L10e+3,12e+65 L10e+4,12¢+6
are equivalent to 0 modulo B(12kp,12e 4+ 7) in F(12kp, 12e 4+ 7) by (4.15) in [15].
Since (12e +4) — (12kp + p) = 2f + 1, we have

(4.18)

$10kp,12kp(v$)p

2f +1 2f +1 2 2f +1
5f+1 5f+2)3f
= - <2f " 1) <$10e+3,126+4 + (5f + 1)T10e+4,12¢45 + %x106+5,126+6>

modulo A(12kp, 12e + 7) + B(12kp, 12e + 7) in F(12kp,12e 4+ 7). Here — (g;ﬁ) #0
in K. By (4.14), (4.18), we know
(5f +2)3f

(4.19) T10e43,12e44 T (Of + 1)T10e44,12¢45 + Tx106+5,12e+6 =0

modulo A(12kp, 12e + 7) + B(12kp,12e + 7) in F(12kp,12e + 7). Furthermore we
have

— 10e+3 1,.12e+4 2 12644
(4~20) 0 =210e+3,12¢+4 = V ettt (1 +x+x° 4+ - ) et

_ 6e+2
=T10e+3,12e+4W

6e + 3

9 )xloe+5,12e+6

=210e+3,12e+4 + (6€ + 2)T10e44,12¢45 + (

modulo A(12kp, 12e +7) + B(12kp,12e + 7) in F'(12kp, 12e + 7) by Lemma 4.3 (2).
We have

— 10e+4, e41 12 9 12
(4.21) 0 =210e1 412045 = v 0T a2 (1 4 g 22 ) 12685

_ 6e+3
=T10e+4,12e+5W

=T10e+4,12e+5 + (6€ + 3)T10e45,12¢+6
modulo A(12kp, 12e + 7) + B(12kp,12e + 7) in F'(12kp, 12¢ + 7) by Lemma 4.3 (1).
Here remark e = kp + f = f mod p. By (4.19), (4.20), (4.21), we obtain

3f(3f+2)

5 T10e+5,12¢+6 = 0

modulo A(12kp, 12¢ + 7) + B(12kp, 12¢ +7) in F(12kp, 12¢ + 7). Since 2G/*2) o
in K, we obtain (4.13).
For h > 0, taking the p"~th power of the above equation, we obtain

x]_oeph—1+5ph—1,12€ph—1+6ph—1 = 0

of +1 of +1 of 4+ 2 5
- < f )$10e+3,126+4 - (5f + 1)( f )$10e+4,12e+5 - ( f ) ( f )$10e+5,12e+6
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modulo A(12kp", 12ep" 1 +6p" 1 +1)+B(12kp", 12ep" 1 +6p" 1 4+1) in F(12kp", 12eph 1+
6p"~1 + 1) by (4.7). Here remark

10€ph_1 _|_ 5ph—1 :10kph _|_ 10fph—1 + 5ph—1
-1

=10 (kph + "+ p—2

12ep"~t + 6p"~t =12kp" + 12fp" 1 4 6p" !

p—1
2

(p“+ph3+~~+p+1)) +5,

=12 (kph + " "2+ 1)) +6.

Therefore we know
(4.22)

@it fph =14 (55 1) (=24 ph =ity 15 10 Dprj i 7> 1> 0, jp" < kp* < (j 4+ 1)p" and (k,p) = 1.
Then D, ; contains p" —p"~! elements of the form (I), as in (4.10) and p"~* elements

of the form (2), as in (4.22). Therefore D, ; contains at least p” elements. We know
that Cox(Y") is not Noetherian by (4.6).

[IT1-3] Assume that p = 10f + 1, where f > 0.
Let k be a positive integer such that (k,p) = 1. Put e = kp + f.
First we shall prove that

(4.23) Z10e+5,12¢+6 = 0

modulo A(12kp, 12e + 7) + B(12kp,12e + 7) in F(12kp, 12e + 7).
Consider the triangle 7" with three vertices (10e, 12kp+10f), (10e, 12e¢+6), (10e+
6+ 2f,12¢ + 6).

12e 4+ 7
12e + 6 O
O
12e ©
12kp 4+ 10f
(4.24) 10e 10e + 6 + 2f
For cy,cq,...,c6 € K, we put
[Co, €1, - - -y C6) =COT10e+1,12¢41 F C1T10e,12e41 T C2T10e41,12e42 + C3T10e+2,12¢+3

+ C4%10e+3,12¢4+4 T C5T10e4-4,12e45 T C6L10e+5,12¢+6-
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If (o, n) is in the triangle 7" such that n < a+2e, then z,, ,, is in A(12kp+10f, 12e47)
except for T1pe+1.12¢4+1. If (o, m) is in the triangle 7" such that n > a + 2e + 2, then
Tan is in B(12kp + 10f,12e + 7). Therefore any K-linear combination of z,,’s in
the triangle T is equivalent to some [cg, ¢y, . .., ¢g] modulo A(12kp + 10f,12e +7) +
B(12kp +10f,12e + 7) in F(12kp + 10f,12e + 7).

Taking the pth power of (4.9), we obtain

T1okp12kp(VT)P =0

modulo A(12kp, 12kp+7)+ B(12kp, 12kp+7) in F(12kp, 12kp+7) since 12kp+2p =
12kp + 20f + 2 > 12kp + 12f + 7 = 12e + 7. Here remark that z1okp 12kp(vT)?
mod x'?**7F is a K-linear combination of z,,’s in the triangle 7' since (10kp +
p, 12kp + p) = (10e + 1,12kp + 10f + 1) € T. We have

(4.25)

5 5
3510kp,12kp(279€)p = T10kp+p,12kp+pW f= L10e+1,12e+1-2fW f

5 of +1 _
:(1 o x)5f$1()e+1,126+172f + ( 1f) (1 — x)sfx106+2,126+272f + ( f2 )(1 - 96)5f 1x106+3,12e+372f

5f+1 B 5f +2 _
+ ( f3 )(1 — ) @1geya12e14-2f + ( f4 )(1 — ) 22100512045 2f + -

= (3.0~ (21 =57 G = (R G = () G = () G|

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (2).
By (4.8) we obtain

(4.26)
0 =2z10¢,12¢ = $1Oe,12e€76e =(1- $)712€$10e,126w66

6e 6e e Ge e
:(1 — ) 0 T10e,12¢ + ( 1 ) (1 — ) 0 1$10e+1,12e+1 + (2 ) (1 — ) 0 1$10e+2,12e+2

6e + 1 e 6e + 1 e
+ ( 3 )(1 — ) 0 2170106+3,12e+3 + ( 4 )(1 — ) 0 2$10e+4,12e+4

Ge + 2 e
+ ( 5 )(1 - x) 0 396’10e+5,126+5 + -

= [6e, Ge, 6e(6e + 1), (%) (6e + 1), (*F1) (6e +2), (/') (6e + 2), (*?) (6e + 3)]

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (1).
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We have
(4.27) 0 =210¢,12¢+1 = 9310e,12e+1w66+1
6e+1
=T10¢,12e+1 + (6€ + 1)T10e41,12¢12 + 9 T10e+2,12¢+3

6e + 2 6e + 2

+ T10e43,12¢4+4 1 T10e44,12¢45

3 4

6e + 3

+ 5| T10e45 12046 +e

=[0.16e+1,(°57), (7). (7). (°57)]

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (1).

We have
(4.28) 0 =210e41,12e42 = Jf10e+1,12e+2w6€Jrl
6e + 2
=T10e+1,12e42 + (6€ + 1)Z10e42,12¢+3 + 9 T10e+3,12¢+4
6e + 2 6e + 3
+ 3 T10e+4,12¢45 T 4 T10e45,12¢46 T+ °

= 0.01,66+ 1, (52), (), ()]

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e 4+ 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (2).

We have
(4.29)

_ _ 6e+2
0 =210e42,12e4+3 = T10e+2,12e43W

be + 2 6e + 3
=T10e+2,12e+3 + (6€ + 2)T10643 12414 + T10e+4,12¢4+5 T T10e+5,12¢46 T **°

2 3
= [0.0,0.1.60 12, (%), ()]

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (1).
We have

_ _ Ge+2
(4-30) 0 =210e+3,12e+4 = L10e+3,12e+4W

6e + 3

9 )$1oe+5,12e+6 +

=T10e4+3,12e+4 1+ (6€ + 2)T10e44, 12045 + (

= [O’ 0,0,0,1,6e + 2, (66;3”

modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (2).



INFINITELY GENERATED SYMBOLIC REES RINGS 29

We have

_ _ 6e+3
(4-31) 0 =Z10e+4,12e4+5 = L10e+4,12e+5W

=T10e44,12e45 1+ (6€ 4 3)T10e15,12¢46 + -

=10,0,0,0,0, 1, 6e + 3]
modulo A(12kp + 10f,12e + 7) + B(12kp + 10f,12e + 7) in F(12kp + 10f,12e + 7)
by Lemma 4.3 (1).

Here remark e = f mod p.
By (4.25), (4.26), (4.27), (4.28), (4.29), (4.30), (4.31), we obtain

(2f +1)1(3f)! 2f +1

0=-" 707 (4.25) —
G ) g
N 4+ 53f + 108 f2 +63f3(4 30) (1+12f + 153 (4 +5f +3f2)
6 e 6
—24 — 308f — 60012 — 2053 + 114 f* — 117f°
40

~ —(10f + 1)(2501757 4 5782430 f + 2175700 f2 — 1257000 f% + 1170000 f*) + 101757
n 4 x 106

modulo A(12kp, 12e + 7) + B(12kp, 12e 4+ 7) in F(12kp, 12e + 7). Since 101757 =
3 x 107 x 317, it is not equivalent to 0 modulo p. (Recall that p = 10f +1 =1
mod 10.) Thus we obtain (4.23).

For h > 0, taking the p"~'th power of the above equation, we obtain

1+ 14f + 18f2

5 (4.29)

(4.26) + (2f +1)(4.27) 4+ (3f)(4.28) —

(4.31)

=10,0,0,0,0,0,

L10e+5,12¢+6

L10eph—145ph—1 12eph—146ph—1 = 0

modulo A(12kp", 12ep" 1 +-6p" 1 +1)+B(12kp", 12ep"~14+-6p"~1+1) in F(12kp", 12ep" 1+
6p"~! + 1) by (4.7). Here remark

10€ph_1 + 5ph—1 :10kph + 10fph—1 + 5ph—1
-1

=10 (k‘ph + M+ p—2

12ep" ™t + 6p"~t =12kp" + 12fp" 1 4+ 6p" !

=12 (kph + "+

(ph‘2+ph‘3+---+p+1)) +5,

p—1

5 (ph_2+ph_3+---+p+1)) +6.

Therefore we know
(4.32)
@it ph- 1457 (ph-2 1 ph—3 1 pr1) 18 10 Dprj if 7 > h >0, jp" < kp" < (j+ 1)p" and (k,p) = 1.

Then D, ; contains p"—p"~! elements of the form (I), as in (4.10) and p"~* elements
of the form (2), as in (4.32). Therefore D, ; contains at least p” elements. We know
that Cox(Y’) is not Noetherian by (4.6).

[I11-4] Assume that p = 10f — 1, where f > 1.
Let k be a positive integer such that (k,p) = 1. Put e = kp + f.
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First we shall prove that

(4.33) Z10e+5,12¢+6 = 0

modulo A(12kp, 12e + 7) + B(12kp,12e + 7) in F(12kp, 12e 4+ 7).
Consider the triangle 7" with three vertices (10e — 1, 12kp+p), (10e — 1, 12e +6),
(10e + 6 + 2f, 12¢ + 6). Here remark 10kp + p = 10e — 1.

12e +7 —-
12e + 6

o
A\

Fan
U

12e O

12kp +p

(434) 10e 10e + 6 + 2f

For dy,ds,co,c1...,c6 € K, we put

[dla dy, co,c1 ... 706] :d1x10671,12371 + d29€106+1,12e+1 + CoT10e—1,12¢ T C1T10e,12¢4+1 T C2T10e+1,12e+2

+ C3%10e42,12¢+3 T C4T10e+3,12e+4 T C5T10e+4,12¢+5 T C6L10e+5,12¢+6

If (o, n) is in the triangle 7" such that n < a+2e, then z,, is in A(12kp+p, 12e+7)

except for ipe—112¢—1 and ZTiget112e+1- 1 (a,n) is in the triangle 7" such that

n > o+ 2e + 2, then z,, is in B(12kp + p,12e + 7). Therefore any K-linear

combination of x,,’s in the triangle 7" is equivalent to some [dy,ds, co,c1,. . ., g

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p, 12¢ + 7).
Taking the pth power of (4.9), we obtain

T10kp,12kp (VT)P =0

modulo A(12kp,12e + 7) + B(12kp,12e + 7) in F(12kp,12e + 7). Here remark
12kp + 2p = 12kp 4+ 20f — 2 > 12kp + 12f + 7 = 12e 4+ 7 because f > 1. We know
that z1oxp 12kp(v2)P mod z'**T7F is a K-linear combination of z,,’s in the triangle
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T’. We have

(4.35)

5f—1 5f—1
$10kp,12kp(?190)p = T10kp+p,12kp+pW == T10e—1,12e—1—2fW f

_ _ 5)
=(1 — )™ "T10e-112e-1-95 + (5f — 1)(1 — x)* " T10e,12e—2 + ( /

2

5 _ 5f+1 _
+ ( ?)f) (1 — 2) 2210091904227 + ( / )(1 — )Y 21004312013 2+

) (1- l‘)5f72$10e+1,12e+172f

4

5f4+1 B 5f + 2 _
+ ( f5 >(1 — 1) 210044120 44-2f + < f6 )(1 — ) 200512045 2f + -

[C4). O (5, () (6 — DD~ G2~ ) CLD).

TG -G - ) G

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (2).
We have

(4.36)

_ _ 6e—1 2 12e—1
0 =210e—1,12¢—-1 = T10e—1,12e—1W l14+zx+a"+--)

= (1 + (12e — 1)x> ((1 — x)66_1x108_17126_1 + (6e —1)(1 — x)ﬁe_lxwe,ue
_l_

Ge _ 6e o
( )(1 — )% 221001112011 + ( )(1 — 2)% 727001912012

2 3
6e + 1 o 6e + 1 o

+ ( A )(1 - $)6 33710e+3,126+3 + ( 5 )(1 - -’3)6 351710e+4,12e+4
6e + 2 o

+( 6 )(1 - 55')6 4$10e+5,126+5 + - )

=[1, (%), 6e, (6e — 1)6e, (%) (6e + 1), (%) (6e + 1), (*F1) (6e +2), (*) (6e + 2), (°F) (6e + 3)]

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (2).
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We have
(4.37)

= 6e 2 12e
0 =Z10e,12¢ = L10e,12¢W (1 +x+x+--- )

6e _ 6e _
=(1+ 12ex) ((1 — 2)%T106,12¢ + ( 1 ) (1 —2)% " 210et 112041 + (2 ) (1 — )% 1004212042

6e + 1 o 6e + 1 o
+ ( 3 ) (1 - $)6 2$10e+3,12e+3 + ( 4 )(1 - $)6 2$10e+4,12e+4

6e + 2 o
+( 5 )(1 - 55)6 3$106+5,12e+5 + - )

= [0,6e, 0, 6e, 6e(6e + 1), (%) (6e + 1), (° 1) (6e +2), (*) (6e +2), (°S) (6 + 3)]

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (1).

We have
(4.38)

_ _ Ge
0 =Z10e—1,12¢ = L10e—1,12eW

6e e+ 1 6e + 1
=T10e—1,12¢ T 1 T10e,12e+1 T+ 9 T10e+1,12¢4+2 T 3 T10e+2,12¢+3

6e + 2 6e + 2 6e + 3
+ 4 Z10e+3,12¢+4 + 5 T10e+4,12e4+5 T 6 T10e+5,12e4+6 T+

= [07 0, 17 66, (66-"—1)7 (66+1)7 (66+2)’ (66-{-2)7 (66-1-3)}

2 3 4 5 6

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (2).

We have

(4.39)

_ — 6e+1
0 =Z10e,12e4+1 = T10e,12e+1W

6e + 1 6e + 1 6e + 2
=T10e,12e4+1 T 1 T10e+1,12¢4+2 T 9 T10e42,12¢+3 T T10e+3,12¢+4

3
6e + 2 6e + 3
+ 4 T10e+4,12¢4+5 T 5 T10e45,12¢46 T+ °

=[0,0,0.1,6e+1, (7). (*57). (7). (°57)]

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (1).
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We have
(4.40)

_ _ Ge+1
0 =Z10e+1,12e+2 = L10e+1,12e4+2W

6e + 1 6e + 2 6e + 2
=T10e+1,12¢+2 T 1 T10e+2,12¢+3 + 9 T10e+3,12e+4 T 3 T10e+4,12¢+5

Ge + 3
+ g ) T10e+512e46 +

=[0,0,0,0.1,6e+1, (%), (*57). (°4°)]

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (2).
We have

(4.41)

_ — 6e+2
0 =210e42,12e43 = T10e+2,12e43W

6e + 2 6e + 2 6e + 3
=T10e+2,12¢+3 T T10e+3,12¢+4 T T10e+4,12¢4+5 T T10e+5,12¢4+6 T *

1

=[0,0,0,0,0,1,6¢ + 2, (%), (°F%)]

2 3

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (1).

We have
_ _ Ge+2
(4-42) 0 =Z10e+3,12e+4 = L10e+3,12e4+4W
6e + 2 6e + 3
=T10e+3,12¢+4 T+ 1 T10e4+4,12¢4+5 T 9 T10e+5,12e4+6 T+

= [()7 0,0,0,0,0,1,6e + 2, (66+3)]

2

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (2).

We have
_ _ 6e+3
(4-43) 0 =Z210e+4,12e+5 = L10e+4,12e+5W
6e + 3
=X10e+4,12¢+5 T 1 T10e45,12e46 T« -

=10,0,0,0,0,0,0, 1, 6¢ + 3]

modulo A(12kp + p,12e + 7) + B(12kp + p,12e + 7) in F(12kp + p,12e + 7) by
Lemma 4.3 (1).
Here remark e = f mod p.
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By (4.35), (4.36), (4.37), (4.38), (4.39), (4.40), (4.41), (4.42), (4.43), we obtain
2f+1DiEf -1 (L+2f)(=1+21f)
(5f —1)! 12

_ 2 3 _ _ 2 _ 3
B 2+15f+249f +42f (4_39)_2 14f Zlf 45 f
B —12+79f+335]1f;+432f3+ 198f4<4.41) N

0= (4.35) — (14 2f)(4.36) + (4.37) — (1 — 9f — 12f%)(4.38)

(4.40)
(14 £)2(=8+66f + 177f2 + 81f3)
8
=120+ TI8f + 38217 + 6630 + 3480* — 5508° — T101f° (4.43)
120 '

3(2 + 3£)(120 — 872f — 26702 — 32133 + 4907 f4 + 22509 £5 + 24147 )
720

modulo A(12kp, 12e + 7) + B(12kp, 12e + 7) in F'(12kp, 12e 4+ 7). We have

(4.44)
107 -3(2 4 3f)(120 — 872f — 26702 — 32133 + 4907 f* + 22509 f° + 24147 f°)

=3(20 43 -10f)(12- 10" — 872 - 10°(10f) — 267 - 10°(10f)* — 3213 - 10*(10f)?
+ 4907 - 10%(10£)* + 22509 - 10(10f)° 4 24147 - (10£)5)
=323 - 3626937 = 3°-23-44777 mod (10f — 1).

Therefore it is not equivalent to 0 modulo p. (Recall that p = 10f—1=9 mod 10.)
Thus we obtain (4.33).
For h > 0, taking the p"~'th power of (4.33), we obtain

(4.42)

=10,0,0,0,0,0,0,0,

’:U].Oeph_1+5ph_1,126ph_1+6ph_1 = 0
modulo A(12kp", 12ep" 1 +6p" 1 +1)+B(12kp", 12ep" 1 +6p"1+1) in F(12kp", 12eph~1+
6p"~1 + 1) by (4.7). Here remark

1Oeph71 + 5ph71 :10kph + 10fph71 + 5ph71

—1
=10 (kp" + "+ pT(
12ep" ™t + 6p"~t =12kp" + 12fp" 1 4+ 6p" !

—1
=12 (k:ph + fp" 4 pT

ﬁ”+p““%~+p+n)+&

(ph_2+ph_3+---+p—l—1)) + 6.

Therefore we know

(4.45)
@kph+fph—1+(5f—1)(ph—2+ph—3+~~+p+1) is in Dprj if 7 > h >0, jp" < kp" < (j+1)p" and (k,p) = 1.

Then D, ; contains p" —p"~! elements of the form (I), as in (4.10) and p"~* elements
of the form (2), as in (4.45). Therefore D, ; contains at least p” elements. We know
that Cox(Y’) is not Noetherian by (4.6).

[ITI-5] Assume that p = 10f + 7, where f > 0.
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Let k be a positive integer such that (k,p) = 1. Put e = kp + f.
First we shall prove

(4.46) T10e4+7,12e48 = 0

modulo A(12kp, 12e + 9) + B(12kp, 12e + 9) in F'(12kp, 12e + 9). Taking the pth
power of (4.9), we obtain

(447) [L’lgkpigkp(’l}x)p =0

modulo A(12kp, 12e+9)+ B(12kp, 12e+9) in F(12kp, 12e+49). (Remark 12kp+2p =
12kp +20f + 14 > 12kp + 12f + 9 = 12¢ + 9.) Then we have

_ 5f+3
$10kp,12kp(?11’)p = T10e+7,12e+7—2f W f

5f+3

. > (1= 2)7 2100481200827 + -

=1 — 2)" 2100471201 7-2f + (

by Lemma 4.3 (2). The coefficient of x1e1712¢+48 1S —(;;ﬁ) Thus (4.46) follows
from this. Therefore we know

(4.48) @prg 18I0 Dy j if (k,p) = 1 and jp" <kp < (j + 1)p"

Let m be the integer satisfying
(4.49) (10e + 7)p+ 1 = 10m,
that is,

m=ep+T7f+5=kp>+ fp+7f+5.
Next we shall prove
(1) if p # 44777, then

(4.50) T10m+5,12m+6 = 0

modulo A(12kp? 12m + 7) + B(12kp?,12m + 7) in F(12kp?, 12m + 7),
(2) if p = 44777, then

(4.51) T10m+7,12m48 = 0

modulo A(12kp?,12m + 9) + B(12kp?, 12m + 9) in F(12kp?, 12m + 9).
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Consider the triangle 7" with three vertices (10m—1, 12ep+8p), (10m—1, 12m+38),
(10m + 11 +4f, 12m + 8).

12m + 8

Fan
U

12m + 6

Fany
A4

Fany
Ay

12m Q

12ep + 8p

(4.52) 10m 10m + 11 + 4f

For dy,ds, co,c1...,c7 € K, we put

[dla d?a Co,C1 ..., 67]
=d1T10m—1,12m—1 + 2T 10m+1,12m+1 + CoT10m—1,12m + C1T10m,12m+1 + C2T10m+1,12m+2

+ C3%10m4-2,12m+3 T C4aT10m+3,12m+4 T C5T10m44,12m+5 T C6T10m+5,12m+6 T CTT10m47,12m+8

If (o, n) is in the triangle 7" such that n < a+2m, then z, , is in A(12ep+8p, 12m+
9) except for T19m—112m—1 and Tiomt1,12m+1- I (o, 1) is in the triangle 7" such that
n > o+ 2m+ 2, then z,, is in B(12ep + 8p,12m + 9). Therefore any K-linear
combination of z,,’s in the triangle 7" is equivalent to some [dy,ds, co,c1,. .., 7]
modulo A(12ep + 8p,12m + 9) + B(12ep + 8p, 12m +9) in F(12ep + 8p, 12m + 9).

Since F(12e+9,12e +10) = A(12e+9,12e + 10) + B(12e + 9, 12e + 10), we btain

(4.53) T10e+7,12¢+8 = 0
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modulo A(12kp?, 12e + 10) + B(12kp?, 12e + 10) in F(12kp* 12e + 10) by (4.46).
Taking the pth power of (4.53), we obtain

(4.54)

_ 10e+7
<U106+7w( i ]x12e+8) 5f+3

0 =(210e47,12¢48)" = P = T10m—1,12ep+8pW

=(1 — 2)> 2 10m_112ep18p + (5 +3)(1 — 2) 3210, 190p18p41

5f +4 5f +4

+ ( f2 )(1 - $)5f+2x10m+1,126p+8p+2 + ( f3 )(1 - $)5f+2$10m+2,126p+8p+3
5f +5 5f +5

+ ( f4 )(1 — @) 3 19eprspra + < f5 )(1 — )3 g o 4 19ep s 8p 1

5f +6 5F+T _
+ ( / >(1 - $)5f$10m+5,12ep+8p+6 + < f8 )(1 - $)5f 1x10m+7,126p+8p+8 + -

=G0 = (5 GE). GRE) G + 3D () G- (4 G,
(

)G G GE- ) GEL). O () |

modulo A(12ep + 8p, 12m + 9) + B(12ep + 8p, 12m + 9) in F(12ep + 8p, 12m + 9)
since 12ep + 10p = 12ep + 100f + 70 > 12ep + 84 f 4+ 69 = 12m + 9. Here remark
that (4.54) is [-1,0,---,0] if f = 0.
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Replacing e by m and adding the last component? to (4.36), (4.37), (4.38), (4.39),
(4.40), (4.41), (4.42), (4.43), we obtain

(4.55)

0=[1, ("), 6m, (6m — 1)6m, () (6m + 1), (%) (6m + 1), (*" 1) (6m + 2), (*2H) (6m + 2),
(" 2) (6m + 3), (°F) (6m + 4)]

(4.56)

0 = [0,6m,0,6m, 6m(6m + 1), (°)(6m + 1), (*F) (6m + 2), (*") (6m + 2), (°"5"?) (6m + 3),
(") (6m + 4)]

(4.57)

0= [0,0,1,6m, ("), ("5, (7)), (75, ()]

(4.58)

0=1[0,0,0,1,6m+1, ("3, ("), (") (57). (7))

(4.59)

0=1[0,0,0,0,1,6m +1, ("), ("), ("), (6]

(4.60)

0=1[0,0,0,0,0,1,6m +2, ("), ("), (5]

(4.61)

0=1[0,0,0,0,0,0,1,6m +2, (°F), (°")]

(4.62)

0=1[0,0,0,0,0,0,0,1,6m + 3, (°%4™)]

modulo A(12kp+p, 12m+T7)+ B(12kp+p, 12m+7) in F(12kp+p, 12m+T7). Remark
that

(4.63) m=7f+5 mod p.

Ut p £ 44777, then we do not need the last component. If p = 44777, then we may assume

that denominators of (‘)f (O, (OmR), (O, (P (in the last components) are units.
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By (4.54), (4.55), (4.56), (4.57), (4.58), (4.59), (4.60), (4.61), (4.62), we have

4f 4+ 4)f! 2(1 870 + 2474 f + 1759 f2
0 z%@.m) L (4f + 4)(ass) — 2ED +6m S+ 179/
— (120 4 289 f 4 168f2)(4.57) + (1860 + 7003 f + 86712 + 3518 f*)(4.58)

3720 + 14708 f + 19303 f + 8405 3 (4.59)
5 .

| 65100 + 343772 + 680605 > + 598882/° + 197669 * .
6 .

AT6160 + 3042856 f + 7850330 £2 + 10243855 £3 + 6774982 + 1819801 f° (161)
24 ‘

_1909401604-1516966184 f 45005402706 f2 48777761165 3 +8625823355 f 4+4502014011 £5 4974544899 £ ( 4 62)
120 :

(4.56)

:[07 07 07 Oa 07 07 07 07 q1, Q2]

modulo A(12ep + 8p, 12m + 9) + B(12ep + 8p, 12m + 9) in F'(12ep + 8p, 12m + 9),
where

720q; = — 26767572480 — 246120200736 f — 967942897272 % — 2110412205706 f>
— 2754630615405 f* — 2152135097539 f5 — 931716713643 f¢ — 172390143619 f7

(4.64)
40320¢, = — 348081961328640 — 4085017940012352 f — 21279829406091360 >

— 64577996264481356 3 — 125811467012647820 f* — 163172345721567295 f°
— 140876419259495720 f° — 78068028418279174 f" — 25195471807991660 f°
— 3607880835288623 f°.

Here 720 is not divided by p = 10f + 7, and 40320 is not divided by 44777.
First assume that p # 44777. When we divide 720 x 107¢; by 10f + 7 (as a
polynomial of f), the reminder is —250258653. Here we have

(4.65) 250258653 = 3° x 23 x 44777.

Therefore (4.50) holds. (We have to give an attention to the case f = 0, since some
binomial coefficients are 0.)
Taking the p"~2th power of (4.50) for h > 2, we obtain

$10mph_2+5ph_2,12mph_2+6ph_2 = O
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modulo A(12kp", 12mp"~2+6p"24+1)+B(12kp", 12mp"~24+6p"24+1) in F(12kp", 12mp"~2+
6p"~2 + 1) by (4.7). Here remark

10mp" =2 + 5p" 2 =10(kp* + fp+ 7f +5)p" 2 +5(p" 2 —1) +5
—1
=10 (kzph A () e R L R 1>) +5,
12mp" =2 + 6p" 2 =12(kp* + fp+ Tf +5)p" 2 +6(p" > 1) +6

2
~1
=12 <kph T (T T 1)) +6.

2

Therefore we know
(4.66)
Dot i+ T2+ 1+~ tprt) 15 1 Dy 7 2 h 2 2 and jp" < kp" < (G + 1y

Then D, ; contains p” — p"~! elements of the form (1), as in (4.10), p"~! — p"2
elements of the form (3), as in (4.48) and p"~? elements of the form (2); as in
(4.66). Therefore D, ; contains at least p” elements. We know that Cox(Y) is not
Noetherian by (4.6).

Finally assume p = 44777. When we divide 40320 x 109, by 10f + 7 (as a
polynomial of f), the reminder is —5257057765239. Here 5257057765239 is not
divided by 44777. Therefore (4.51) holds. Recall that (4.46) implies (4.51) for m
satisfying (4.49). Therefore, putting

(10m +T7)p+1 = 10n,
(4.51) implies

T10n+7,12n48 = 0

modulo A(12kp?, 12n + 9) + B(12kp3,12n + 9) in F(12kp®,12n + 9). Here
n=mp+T7f+5=kp’+ fp* +(7f +5)p+ (7f +5).

Repeating this process, we know
(4.67)
@kph—l-fph*l+(7f+5)(ph*2+ph*3+ph*4+~~-+p+1) isin Dy jif r > h>1and jp" < kph < (j+ 1)p"

Then D,r ; contains p" — p"~! elements of the form (1), as in (4.10), p"~! elements of
the form (3), as in (4.67). Therefore D, ; contains at least p” elements. We know
that Cox(Y") is not Noetherian by (4.6).

Remark 4.4. We put fi(z) = 22+1, fo(z) = Z(22+1)(3z—1), f3(z) = —(3z—1),
fa(x) = =(52 = 1)(3x — 1), fs(z) = =% Bz —1)(3x - 2). fo(z) = -2 (52— 2)(3z —
1)(3z — 2), folz) = =P (52) (32 — 1)(32 — 2)(3z — 3), fs(z) = — 22 (52) (52 —

3)(3z—1)(3z—2)(3z—=3), fo(z) = =22 (5241)(52) (3 —1)(3x—2)(3z—3) (3z—4),

720

Fro(x) = =23 (50 1+ 9)(52 4 1)(52) (3z — 1)(3z — 2)(3z — 3)(3z — 4)(3z — 5).
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Then we have
Q2f+DI3f -1
5/ - 1)

LR 50 = Uil o) faim) fam) fsm) fom) fr ), (), fao), Falm)

Furthermore we have

(4'35) = [f1(€)7 f2(6), fS(e)v f4<€)7 f5(6>7f6(e)>f7(6)> f8(6)a f9(6)]7

10e =1 mod p(=10f — 1),
10m=1 mod p(=10f 4+ 7).

Hence we obtained the same remainder in (4.44) and (4.65).
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