SOME NECESSARY AND SUFFICIENT CONDITION FOR
FINITE GENERATION OF SYMBOLIC REES RINGS

TARO INAGAWA AND KAZUHIKO KURANO

ABSTRACT. Consider the blow-up Y of a weighted projective plane at a point in
the open orbit over a field of characteristic 0. We assume that there exists a curve
C on Y such that C? < 0 and C.E = 1, where F is the exceptional curve.

In this paper we give a (very simple) necessary and sufficient condition for finite
generation of the Cox ring of Y (Theorem 1.2). It is an affirmative answer to a
conjecture due to He and Kurano-Nishida.

1. INTRODUCTION

For pairwise coprime positive integers a, b and ¢, let p be the defining ideal of the
space monomial curve (t¢,t°,t¢) in K3, where K is a field. The ideal p is generated
by at most three binomials in P = Kz, y, z| (Herzog [12]). The symbolic Rees rings
of space monomial primes are deeply studied by many authors. Huneke [13] and
Cutkosky [1] developed criteria for finite generation of such rings. In 1994, Goto-
Nishida-Watanabe [9] first found examples of infinitely generated symbolic Rees
rings of space monomial primes. Recently, using toric geometry, Gonzélez-Karu [4]
found some sufficient conditions for the symbolic Rees rings of space monomial
primes to be infinitely generated.

Cutkosky [1] found the geometric meaning of the symbolic Rees rings of space
monomial primes. Let P(a, b, ¢) be the weighted projective surface with degree a, b,
c. Let Y be the blow-up at a point in the open orbit of the toric variety P(a,b,c).
Then the Cox ring of Y is isomorphic to the extended symbolic Rees ring of the
space monomial prime p. Therefore, the symbolic Rees ring of the space monomial
prime p is finitely generated if and only if the Cox ring of Y is finitely generated,
that is, Y is a Mori dream space. A curve C on Y is called a negative curve if
C? < 0 and C is different from the exceptional curve E. Here suppose vVabe € Q.
Cutkosky [1] proved that the symbolic Rees ring of the space monomial prime p is
finitely generated if and only if the following two conditions are satisfied:

(1) There exists a negative curve C.
(2) There exists a curve D on Y such that C' N D = ).

In the case of ch(K) > 0, Cutkosky [1] proved that the symbolic Rees ring is
Noetherian if there exists a negative curve.
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The existence of negative curves is a very difficult and important problem, that
is deeply related to the Nagata conjecture (Proposition 5.2 in Cutkosky-Kurano [2])
and the rationality of Seshadri constant. The existence of negative curves is studied
in Gonzalez-AnayaGonzalez-Karu [7], [8], Kurano-Matsuoka [15] and Kurano [14].

Examples that have a negative curve C' such that C.E > 2 are studied in Gonzalez-
AnayaGonzalez-Karu [5], [6] and Kurano-Nishida [16].

In this paper, we study the case where there exists a negative curve C' such that
C.E =1 in the case of ch(K) = 0.

Now, we state the main result of this paper precisely.

Let K be a field. Suppose that a, b, ¢ are pairwise coprime positive integers.
Let p be the kernel of the K-algebra map ¢ : P = K|x,y,z] — K|[T] defined by
o(x) = T p(y) = T p(z) = T°. Assume that p is not complete intersection.
Then we know

p — (xs o yt12u17yt o .QZSQZUZ,ZU o xs;gytg)
with positive integers ss, sz, t1, t3, ui, us such that s = sy + s3, t = t; + i3,
u = Uy +ug. One can prove GCD(s2, s3) = GCD(t1,t3) = GCD(uy, uz) = 1 as in the
proof of Proposition 4.8 in [16]. We put ¢ = —t/t3, U = —ua/u, 5 = s3/s3. Remark

t < —1<7<0<5. Here consider the triangle A;; as follows:
t
Ai,ﬂs
(0,0)
u
(1.1) (u, —u)

The slopes of edges of this triangle are ¢, u, 5 respectively.

Definition 1.1 (Ebina [3], Matsuura [17], Uchisawa [18]). For i = 1,2,...,u, we
put
6 =" {(a, B) € Ngus NZ* | o =i}
Note that ¢, =1 and ¢; > 1 for all : = 1,2,...,u. We sort the sequence (1, {5, ...,
¢, into ascending order
<< <UL

We say that the condition EMU is satisfied for (a, b, ¢) if
0>

fort=1,2,...,u.
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Let me give an example. Suppose (a, b, c) = (17,503, 169). Then

_ (89 2.3 3 49 4 7 40
p=(2" -y Yy =27 2 —aTy)

and the proper transform of 27 — 2%%y is the negative curve.

y A

Then v =7 and

=2, ly=4, l3=5, U, =T, l;=05, lg=3, (=1
Therefore

=1, l5=2 (5=3, ly=4, (=5 Lly=5, (-=T.
The condition EMU is not satisfied in this case.

We put p(™ = p" P, N P, and call it the nth symbolic power of p. Consider the
symbolic Rees ring

Ry(p) := Plpt,p?*,p®¢%, .. ] C P[t].

Assume that z% — z%y' is the negative curve, i.e., Vabc > uc. If the condition
EMU is satisfied for (a, b, c), the symbolic Rees ring of p is Noetherian by Proposi-
tion 4.6 in [16]. In this paper, we shall prove the converse as follows:

Theorem 1.2. Let a, b, ¢ be pairwise coprime positive integers. Let K be a field of
characteristic 0. Assume that p is not complete intersection. Suppose that z*— 3y’
s a negative curve, i.e., vV abc > uc.

Then Rs(p) is Noetherian if and only if the condition EMU is satisfied for (a,b,c).
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It is an affirmative answer to a conjecture due to He [11]. It was also implicitly
conjectured in Kurano-Nishida [16].

Remark 1.3. By the same argument as in the proof of Theorem 1.2, we can prove
the following:

Let K be afield of characteristic 0. Let A,, ,, », be the triangle defined in Section 2.
We put Xa = Proj(E (A, 1y5)), where E(A,, , 1) is the Ehrhart ring as in (2.3).
Let YA be the blow-up of X at (1,1) € (K*)? C Xa. Assume

1 1

+ < 1.
rs — T2 To —T1

Then the Cox ring of YA is Noetherian if and only if the condition EMU is satisfied
for Ay rprs-

The organization of this paper is as follows.

Section 2 is devoted to the preliminary. We give a new criterion for finite genera-
tion in the case where there exists a negative curve C' such that C.E = 1 in section 3.
We give an algebraic description of this new criterion in section 4. We shall give
another proof to the finite generation in the case of ch(K) > 0 (Cutkosky [1]) and
a result in the case of ch(K) = 0 (Kurano-Nishida [16]) in section 5. We clas-
sify (a, b, c)’s for which the condition EMU is not satisfied in section 6. We prove
Theorem 1.2 in section 7.

2. PRELIMINARY

In this paper we assume that rings are commutative with 1. Let N (resp. Ny, Z,
R, Rsg) be the set of positive integers (resp. non-negative integers, integers, real
numbers, non-negative real numbers).

Let rq, r9, r3 be rational numbers such that

(2.1) r<—-1<ry<0<r;.

Let r;; be integers such that

(2.2) ri = 1i1/7Ti2 with GCD(r;,72) = 1 and 79 > 0 for i = 1,2, 3.
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Let A,, ,r, be the rational triangle with slopes 71, 73, 73 such that its lower edge
is the line segment connecting the end points (0,0) and (r92,712) as below.

A
\
\
T3 \
\\ 1
ATLTQJ"B
(0,0) \ ]
’ \
T9 \
\
\
(7" 22, T 12)

We define the Ehrhart ring of A, ,, ., over a field K by

(2.3) E(Ar ryrs) = @ Kvowt™ c K[t w*! 1],

(a,B)EMA ] 1oy, rg NZ2

where v, w, t are algebraically independent over K.

Let K be a field. Suppose that a, b, ¢ are pairwise coprime positive integers.
Let p be the kernel of the K-algebra map ¢ : P = K|x,y,z] — K|[T] defined by
o(x) =T p(y) = T° p(z) = T°. In this paper we always assume that

p is not complete intersection.

Then we know

S92 t3 U1
p= I, ( zx/tl i/uz ;53 ) = (xs _ ytlzuljyt _ x52z“2, P gjssyt:a)
with positive integers s, ss, t1, t3, U, ug, where Io( ) is the ideal generated by 2 x 2
minors of this given 2 x3-matrix, and s = so+s3, t = t1+t3, u = u;+uy (Herzog [12]).
We put, t = —t/t3, U = —us/u, S = so/s3. We think that P = K[z, y, 2| is a graded
polynomial ring with deg(z) = a, deg(y) = b, deg(z) = ¢. Then the Veronesean
subring 5@ is isomorphic to E(Ajz5) as in section 4 in [16].
We have the following proposition:

Proposition 2.1. Let r; and r;; be numbers satisfying (2.1) and (2.2). Then the
following three conditions are equivalent:

(1) The class group of Proj E(A,, r,.r) 1S torion-free.
(2) Z(T11)+Z(7’21 )+Z(T31 ) — 72
712 T'22 732
(3) There exist pairwise coprime positive integers a, b, ¢ such thatt =ry, U =19
and s = rj.
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We omit a proof. By this proposition, we immediately obtain the following corol-
lary.

Corollary 2.2. Let r; and r;; be numbers satisfying (2.1) and (2.2). Let € be any
positive number. Then there exists a positive number rl with r3 — e < rj < r3 such
that there ewist pairwise coprime positive integers a, b, ¢ such that t = 1, U = 1y
and 3 =r}.

Remark 2.3. There exists a one to one correspondence between

p is not complete intersection

A= {(a,b,c)

a, b, c are pairwise coprime positive integers, }

and

ri, 9, r3 are rational numbers,
r<—1<r<0<r;s,

B = Am,?‘g,?"g T11 T91 31 2
Z +Z +Z =2
T19 T2 r32

We define a map ¥ : A — B to be ¥((a,b,c)) = Az
We define amap ¢ : B — A to be ®(A,, ., ) = (a,b,¢), where a, b, ¢ are pairwise
coprime positive integers satisfying

()= (r) ()= (0)
T12 22 32 0

By Proposition 2.1, we can prove that ® is the inverse mapping of W.

3. A NEW CRITERION FOR FINITE GENERATION OF SYMBOLIC REES RINGS

Let K, a, b, c, P = K[r,y, 2], p, A;z5 be as in section 2. In the rest of this paper,
we always assume that

e p is not complete intersection, and
(3.1) b . :
e 2" — x*y" is the negative curve, i.e., uc < vabc.

The second condition above is equivalent to that the area of Az is bigger than
u?/2. Tt is also equivalent to

1 1
= + - < 1.
Ss—u u-—t

(3.2)
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Let S and T be the cone in R? defined by
S = RZO(U, —Ug) —+ RZQ(Sg, 82),
T = RZO(_U, Ug) + RZQ(—ty,, t)

We put
K[S] = @ Kv*w® ¢ K[v*, w*!),
(a,8)€SNZ2
K[Tl= & Kv'w’cKp*, wt).
(a,8)€TNZ2

Let 7 : Y — X = Proj P be the blow-up at V, (p). Let C be the proper transform
of V(2% —x%3y"). Then we have 7(C) = V(2% —a%y") ~ P}.. Put U; = Spec K[5]
and U; = Spec K[T']. Then U;’s are affine open sets of X such that U; UU, D 7(C).
Since C' is isomorphic to 7(C),

C= (@ U)nC)u(x H(Uy)NO)
is an affine open covering of C'. For a positive integer ¢, £C is the closed subscheme

of Y defined by the ideal sheaf Oy (—¢C). In general, for a scheme W, W is affine
if and only if so is Wieq (e.g., Exercise 3.1 in section IIT in [10]). Therefore

(3.3) (C = (=Y (U1) N LC) U (= (Us) N €C)

is an affine open covering of ¢C'.

Let H be a Weil divisor on Y satisfying Oy (H) = 7*Ox(1). (Here remark that
Vi (p) is a non-singular point of X. Therefore 7*Ox (1) is a reflexive sheaf on Y.)
Let E be the exceptional divisor of the blow-up 7 : Y — X. Then we have

CIY) = ZH + ZE ~ 7

and .
H? = —
abc’

Then we have the following criterion for finite generation of R4(p).

E?*=—-1, HE=0.
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Theorem 3.1 (Cutkosky). The following conditions are equivalent:

(1) Rs(p) is finitely generated over P (equivalently, Ry(p) is Noetherian).

(2) The Cox ring Cox(Y') of Y is finitely generated over K (equivalently, Cox(Y")
is Noetherian).

(3) There exists a curve D on'Y satisfying C N D = ().

Since C' ~ ucH — E, we know C.(abH — uFE) = 0. One can show that, if there
exists a curve D satisfying the condition (3) in Theorem 3.1, there exists a positive
integer m such that D ~ m(abH — uFE). (Since D does not contain the points
corresponding to the end points of the lower edge of A; 7, we know that the degree
of 7(D) must be a multiple of ab.) The triangle Az ¢ is corresponding to the toric
divisor Ox(ab). We know that abH — uE is a Cartier divisor at each point in Y
except for the point corresponding to the top vertex of Az;5. On the other hand,
the curve C' does not pass through this point. Ultimately, Oy (m(abH — uFE))|sc is
an invertible sheaf on ¢C for any m and /.

Here we have the following theorem:

Theorem 3.2. The following conditions are equivalent:

(1) Rs(p) is finitely generated over P.

(2) There exists a positive integer m such that Oy (m(abH — uFE))|;c ~ O for
any positive integer £.

(3) There exists a positive integer m such that Oy (m(abH — uE))|muc =~ Omuc-

Proof. First we shall show (1) = (2). Since R(p) is finitely generated over P, there
exists a curve D on Y satisfying C N D = () as in Theorem 3.1. Then D ~ m(abH —
uF) for some positive integer m. Since CND = (), the section in H(Y, Oy (m(abH —
uFE))) corresponding to D does not vanish at any point in C'. Hence it does not vanish
at any point in ¢C for any positive integer ¢. Therefore Oy (m(abH — uE))|sc has
a global sention nowhere vanishes. Thus we have obtained Oy (m(abH — uFE))|,c ~
O

The implication (2) = (3) is trivial.

Next we shall prove (3) = (1). Consider the tensor product

Oy (m(abH — uFE)) ®p, (0 = Oy (—muC) = Oy — Opuc — 0).

Here remark that Oy (m(abH — uFE)) is invertible at any point in muC'. Therefore
we have the following exact sequence

0 — Oy(m(abH —uE —uC)) — Oy (m(abH —uFE)) — Oy (m(abH —uFE))|mu.c — 0.

Taking a long exact sequence on cohomologies, we obtain the following exact se-
quence:

(3.4)
H°(Y, Oy (m(abH—uFE))) LN H°(muC, Oy (m(abH —uE))|muc) — H (Y, Oy (m(abH —uE—uC))).
Since C' ~ ucH — E, we know

HY(Y, Oy (m(abH — uE —uC))) = H' (Y, Oy (m(ab — u?*c)H)).
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Since
R'm.(Oy(m(ab — u*c)H)) = {

we have
HY(Y, Oy (m(ab —u?c)H)) ~ H (X, Ox(m(ab — uc)))
by the Leray spectral sequence. Then we have

Hl (X7 OX(m<ab - UQC))) = H(Qa;,y7z) (P)m(ab—UQC) = 0.

Ultimately, the map 1 in the exact sequence (3.4) is surjective. Since Oy (m(abH —
UE)) muc = Opmuc, there exists f € HY(Y, Oy (m(abH — uFE))) such that ¢(f) does
not vanish at any point in muC. Then any irreducible component corresponding
to the effective divisor div(f) + m(abH — uFE) does not meet C. Therefore R,(p) is
Noetherian by Theorem 3.1. 0J

Corollary 3.3. Assume Oy (m(abH — uE))|nuc =~ Omuc for some m > 0. Then
we have Oy (mm/(abH — uE))|mmue =~ Ommrac for any m' > 0.

Proof. By Theorem 3.2, we have Oy (m(abH —uE))|mmuc =~ Ommruc for any m' > 0.
The assertion immediately follows from it. U
Applying this theorem, we can give another proof to

o Oy (p®(abH — uE))|peuc = Opeye for e > 0, in particular R,(p) is always
Noetherian in the case of ch(K) = p > 0 (Cutkosky [1]), and

e that the finite generation of R4(p) is equivalent to Oy (abH — uFE)|.,c ~ Ouc
in the case of ch(K) = 0 (Kurano-Nishida [16])

in Proposition 5.7 and 5.9.

4. ALGEBRAIC DESCRIPTION OF THEOREM 3.2

In this section we shall describe Theorem 3.2 using algebraic method.
Consider the affine openset U; = Spec K[S] of X. Then

My = (v=1) + ({v"w’(w = 1) | (a, B), (o, B+ 1) € S3)

is the maximal ideal of K[S] corresponding to V. (p). Consider the following affine
openset of the blow-up at Mi:

a,,,B 1
A= KIS [{ viw(w —1)
v—1
Then Spec A is an affine open subset of Y. The defining ideal of C' is
a,,, B 1
({%@Ul) ‘ (., B), (o, B+1) € S}) A.

Consider the affine openset Uy = Spec K[T'] of X. Then
My = (v™'w = 1) + ({v*w’(w = 1) | (o, B), (0, B +1) € T})

; w—1

(a,ﬁ),(a,BJrl)ESH C Ko, w*, ).

v—1
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is the maximal ideal of K[T] corresponding to V. (p). Here remark t < —1 <u < 0
and v™'w — 1 € K[T]. Consider the following affine openset of the blow-up at Mp:

v (w — 1) w—1
B:=K|[T _ HeT K w*, ———.
{50 @ @s e 7] e, S
Then Spec B is an affine open subset of Y. The defining ideal of C' is
vwP (w — 1
<{ﬁ ’ (o, 8), (e, B+1) € T}) B.
Here it is easy to see
7 Y (U) NLC C Spec A, 7' (Uy) N¢C C Spec B
for any ¢ > 0. By (3.3),
(41) o]C = (Spec A)|gc U (Spec B)|gc
is an affine open covering of ¢C'.
Z
u
(0,0)
Let Z be the cone R(u, —uz) + R>¢(0, 1) as above. Put
~w—1 ow—1
T YT v w1
Put
K[Z)= @ Kvv’cKp* v,
(a,B)eZNZ2
v—1 ovlw-1 1 1
L =KI[Z K +1 +1
1] [m’y’vlw—l’ v—1 } C K™, w] v—1"v1w—-1]"

F=K|[Z][z] C L,
G =K|[Z][y) c L.

Here remark that v, w, v™'w are contained in K[Z] since —1 < u < 0. Since

vlw —1
4.2 — = ! €F
(4.2) wo— vw A+
the map F' < L is a localization. Since
v—1

—_— eqd
vlw —1 vty ’
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the map G — L is a localization.

Let ¢ be a positive integer. We know that w is a unit of F//2‘F since F/zF =
K[Z]/(w — 1). We know that v"lw is a unit of F/x‘F since w = (v"'w)v. Since
7 is a nilpotent in F/z'F, % is a unit in F/2°F by (4.2). We can show that

v=L_is a unit in G/y’G in the same way. Thus we obtain isomorphisms

vlw—1
(4.3) Fl2'F ~ L)'l = L/y'L ~ G/y'G

for any ¢ > 0.

For a € Z and n > 0, we define
Tom = 2wz € F,
where [aa] is the least integer such that [ou] > o.

Proposition 4.1. We have

(4.4) F=P P Kzan

ac€Z n>0

(4.5) 'F =P P Kzan

a€Z n>l

for any positive integer £.

Proof. We have
F=K[Z]z]= > Y Kv'wa">> > Ku,,
(a,8)€ZNZ2 n>0 a€Z n>0

by definition.
We shall prove the opposite containment. For rational numbers p, ¢, r such that

q <r,let Wy 4, be the triangle with vertices A(p,q), B(p,r), C(=EzLE2, ThE),

C

A

The slope of the lower edge of W, ,, is 1, and that of the upper edge is —u. We
shall prove the following claim:
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Claim 4.2. Let a, 3, n be integers such that 3 > au and n > 0. Then we have'

v " € Z Kz,

(77m)€Wa,n,B—aE+an2
where the coefficient of T, in vOwW’T"™ is 1.

First suppose 0 < 3 — au < 1. Then v*w’2™ is equal to x,, since 8 = [au].
Next suppose 3 — a@ > 1. Since w® = w?~ + w?~H(w — 1), we have

(4.6)
v“wﬁw _an,B 1 "+ %W ﬁfl(v—l)x”“ _anﬁ 1 n+va+1 B—1 n+1 vawﬂ 1 n+1.

We assume that this claim is true if g — au is smaller. Then we know
a, [B—1 "
v w € E Kz pm,
(’va)ewa,n,ﬁ—l—aﬂ+nmz2

T = E Kz,

(1) EWa11,n41,8-1—(at+1)a+n+1N2L2
a, B—1 n+1

v*w € Z Kxym

(Vrm)EWa,nﬁ»l,,Bflfai+n+lmz2

It is easy to see that triangles W, ,, 51 —amn, Wasin+1,8—1—(a+1)a+n+1 a0d Wo i1 821 autnt1
are contained in W, ,, 3_am+n. Thus we have proved the claim by (4.6).

In the rest of this proof, we shall show that z,,’s are linearly independent over
K. Suppose

(4.7) Z CanZan =0 (Can € K).

Let v be the minimal number which satisfies ¢, ,, # 0 for some m > 0. We think

1

Ton € F C K[v,w]][v” ,w .

Taking the coefficient of v7 of (4.7), we have
Z ey (1 —w)" = 0.
n>0

It implies ¢, = 0 for any n > 0. It is a contradiction. We have proved (4.4) in
Proposition 4.1.

We have
2'F = Z ZKvawﬁx"DZZKxan @@Kwam.
(a,B)€ZNZ2 n2>4 a€Z n>4 a€Z n>l
Using Claim 4.2, we can prove the opposite containment. O

Hf the characteristic of K is 0, we can prove v®w’z" € Z(%m)ewa Y Ly -
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Remark 4.3. For integers «, n, let V,,,, be the cone with vertex A(a,n) as below:

Va,n /
1
A
By Claim 4.2, we have?
(48) TanLaln = Ua+a’wfaﬂ1+fa’ﬂ]xn+n/ c Z Kx%”“
(Vrm)GVa+a/,n+7L’mZ2

where the coefficient of 44/ nin is 1. Here remark [(a + o/)u| < [au] + [o/u].

Proposition 4.4. We have the following equalities:

(4.9) A= Z KvwPa™ = @ @ Kxop

n >0 a0 n>0
(.8),(,B+n) €S (a, [au] +n) € §
(4.10) 'FNA= Z Kv*wfz" = @ @ Kzopn
n>4 a>0 n>4¢
(a,8),(a,f+n) €S (o, [a@] +n) € §
for any positive integer £.
Proof. First we shall prove
A= Z KvewPz".
n>0

(a,8),(a, f+n) €S

It is easy to see that the right hand side is a subring of K[v*=!, w*!, —=]. Therefore
A is included in the right hand side.

Suppose n > 0 and (o, B), (o, B+n) € S. We shall prove v*w”z"™ € A by induction
on n. It follows by definition when n = 0,1. Assume n > 2. Then, by the induction
hypothesis,

v P —vwPa™ = v (v—1D)wPz" = v’ (w—1)z""t = v " P € A

.. . ’ — /— ’
If the characteristic of K is 0, we can prove TomTor v = vOTOlomltla T gntn® o

Z(%m)evﬂa/,nmmﬁ Ly -
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since (o, B+ 1), (o, B+ n), (, 5), (o, +n —1) € S. Therefore it is enough to show
v¥Tlwla™ € A. Here remark (o + 1,3), (e + 1,8 +n) € S. By this argument, it is
enough to show v*T9w’z"™ € A for ¢ > 0. Suppose (¢,1) € S. Then vz € A since
(¢,0),(q,1) € S. We have

v P = (viz) (v € A.
Next we shall prove

Z KovwPam = EB @ Kxqp.

n>0 a0 n >0
(a,ﬁ),(a,ﬁ—f—n) € S (Oé, [(XU.I +’Vl) S S

Here remark that z,,’s are linearly independent by Proposition 4.1. If o > 0, we
have («, [a@]) € S. Therefore the right hand side is included in the left one. Next
we shall prove the opposite containment. Suppose n > 0 and (o, 5), (o, 5 +n) € S.
We shall show that v®w?z™ is in the right hand side. By Claim 4.2, we have

v*w’s" € E Kz .
(’Y:m)EWa,n,ﬂfaﬂ+anZ

It is enough to show v > 0, m > 0 and (v, [yu] +m) € S for any (y,m) €
Wang—ourn N Z?*. Remember v > a >0 and m >n > 0. Put ¢ =~ — a > 0. Since
(77 m) c Wa,n,ﬁfaﬂ+n7 we have

0<m<fB—au+n—qu=p—~yu+n.
Adding [~yu], we have
[va] < [yl +m < B+ n+ ([yu] —ya).
Since 0 < [yu| —yu < 1, we have
[vul < [yl +m < 5 +n.

Since (o, 5+ n) € S, we know (v, 5+ n) € S. Therefore (v, [yu] + m) € S. We
have completed the proof of (4.9).
(4.10) follows from (4.4), (4.5) and (4.9). O

For a € Z and n > 0, we define
Yam = 2wy € G

Proposition 4.5. We have

(4.11) G = EB @ K¥Jon

a€Z n>0

(4.12) y'G = @ @ Kyan

a€Z n>¢t

for any positive integer £.
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Proof. We have
G=KZ = Y Y K > Y Ky
(a,8)€2ZNZ2 n>0 a€Z n>0
We shall prove the opposite containment. For rational numbers p, ¢, r such that

q <r,let W, . be the triangle with vertices A(p, q), B(p,r), C(#, @).

A

The slope of the lower edge of W is —1, and that of the upper edge is —1 — .
3

Let «, 3, n be integers such that § > aw and n > 0. Then we can prove

vrwlyt € Z Kyym
(yym)eW/, NZ2

n,B—au+n

in the same way as in Claim 4.2.
Thus (4.11) and (4.12) is proved as Proposition 4.4. O

Remark 4.6. For integers a, n, let V  be the cone with vertex A(a,n) as below:

V/

A

3The coefficient of Ya,n is 1. If the characteristic of K is 0, we can prove vrwfyn €

Z(%m)EW’ nz2 Zy%m'

a,n,B—atu+n
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By the proof of Proposition 4.5, we have?

YanYo' v = UOH_OC w[aﬂ]—&-fo& ] yTH-n S Z Ky%mv

(m)EV L oty NP

where the coefficient of Yota/ nin is 1. Here remark [(o + o')u] < [au] + [/T].

Proposition 4.7. We have the followmg equalities:

(4.13) B= 3 vl =@ B Kyam

n>0 a<0 n>0
(,B), (e, B+n) €T (o, [aw] +n) €T
(414)  2'GnB= 3 vl =@ B Kyen
n>{ as0 n>{¢
(a,ﬁ),(a,6+n)ET (o, ’—Otﬂ-‘-f—n)ET

for any positive integer £.
We omit a proof since we can prove it in the same way as Proposition 4.4.
We put
= [/2'F,
= G/y'G,
= A/(z'F N A),
= B/(y'G N B).

By (4.3), we have
Bg C Gg Fg D) Ag

Let
2,0 : Bg — Fg
be the above inclusion. Then, since —v~!(1 — x) = ”;lf’l’ L we know
VT
) =1
and

Y(Yan) = vwl <_ 1Ux ) = (1)l (@ 4 2% 2 )
—x

For a € Z and n € Ny, we put

Zam = (= 1)"0(Yann) = 00w @ (@ 422 423 4,
Since n > 0, [(a — n)u| > [aw]. By Claim 4.2, we can describe®
(4.15) Zon = Z CymTym (Cym € K)

(v,m)EVa,nNZ?

4f the characteristic of K is 0, we can prove Yo nlorns = voT@ wlo@ltla@lynin’ o
Z('y m)EV, i NZ? LY~y m-

SIf the characteristic of K is 0, we can prove Cy,m € Z.
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with ¢,,, = 1. Then, we have

FZ = @ @ K'Ta,m

a€Z £>n>0
(4.16) A= P  Kzan
a>0 £>n>0

(a,[ou] +n) €S

417) vB) =P P  EKu.=P D Kzan.

a€Z £>n>0 a€Z £>n>0
(o, [a@i] + 1) € T (a—n, [(a —n)a] +n) €T
We have
(Spec A)|sc = Spec Ay, (Spec B)|sc = Spec By
and
(C' = Spec A, U Spec By, Spec F;, = Spec A, N Spec By
by (4.1).

By Theorem 3.2, it is very important whether Oy (m(abH — uFE))|sc is a free
sheaf or not. We denote Oy (m(abH —uFE))|ic by L. As we have seen just before
Theorem 3.2, it is a locally free sheaf on ¢/C'. Here put

e U, U2
& =v"w ( -
Remark that the constant term of £ is 1. We know that

v

1—w

L4 £m,€|Spec Ay =~ OSpec Aps
(418) L Lm,£|SpecBg = OSpecBgy
e the transition function of £,,, is €™ € F/.

Here ( )* is the set of unit elements in the given ring. Thus we obtain the following:
Proposition 4.8. £,y >~ Oy <= 34 € A), Ip € B, such that ™ = Ea€p € F[

Remark 4.9. Let m be a positive integer. Then the following conditions are equiv-
alent:

(1) Oy (m(abH — uE))|muc =~ Omuc-

(2) 364 € A%, 36 € BX, such that €™ = £465 € FX,

(3) There exists g € [p™%],.qp such that 2" — z%y* ¢ satisfying Huneke’s crite-
rion [13], that is, {p(P/(z* — x*#y", g, 2)) = mua holds.

(4) There exists an effective Weil divisor D such that D ~ m(abH — uFE) and
cCnD=0.

5. STRATEGY TO PROVE FINITE/INFINITE GENERATION
Fori:=1,2,...,mu, we put

qi =# {(a,B) € mAE,ﬂ,E nz? | a =i}

1 _ 1 u o u
v e-- ) = (w U) w " = (1—x)*(1—a4vx)™ = (1—x01)" (1—z01+211) 2.
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Note that ¢, =1 and ¢; > 1 for all « = 1,2, ..., mu. We sort the sequence ¢, ¢o,
.+, Gmy into ascending order

(5.1) G << <qh

We say that the condition EMU is satisfied for mAz 5 5 if
q; > i
for i = 1,2,...,mu. If the condition EMU for mA; is satisfied for some m >

0, then Ry(p) is Noetherian. Omne can prove it in the same way as the proof of
Proposition 4.6 in [16].

By definition, the condition EMU is satisfied for (a, b, ¢) iff the condition EMU is
satisfied for Az .

Let (a,b, c) be (53,48,529). It satisfies (3.1). It is not difficult to prove that the
condition EMU is satisfied for (53,48, 529). Therefore R4(p) is Noetherian. However
the condition EMU for mA; ;5 is not satisfied for any m > 2.

The following lemma is proved by Zhuang He. We give a proof of it for a reader
below.

Lemma 5.1 (He [11]). Assume that the condition EMU for mAzy 5 is not satisfied.
Then there exists an integer d satisfying 1 < d < mu such that the sequence ¢, q5,
ey G, defined in (5.1) coincides with

1,23 ...,d—1,4d, d,....
Proof. For v € Z, we put
(5.2) a; =" {(a, ) € SNZ* | a =i}
b =7 {(a,B) € TNZ* | a =1}
By definition, we have
e 2b3>2bo>b 1 2>21<a; <ay<az<---
and

lim a; = lim b_; = oc.
1—00 i—00

Here we remark a; > 0 and b_; > Osincet < —1 <7 < 0 < 5. We sort the sequence
1,a1,b_1,a9,b_9,a3,b_3,a4,b_4, ... into ascending order

<< <<

For 7 > 0, let e; be the positive integer such that c., < i < ¢.,41. Then it is easy to
see the following:

(5.3) ¢ =¢; fori=1,2,...,mu, where ¢} is defined in (5.1).
(5.4)  The condition EMU for mA
satisfying 0 < ¢ < mu and e; > 1.

7ms 18 not satisfied if and only if there exists i
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By definition, we have
a; = |is| — [wm] +1
b, = |—it] — [—iu] +1
for i > 0, where |is] is the maximal integer such that is > |is|. Since
[(i +J)5] = [is] + [j5]
i+ )] < [ + [,
we obtain

CLZ‘+jZCLi+CLj—1

(55) by > by +b—1

for positive integers ¢ and j.
If ay =1orb_y =1, then ¢; = ¢, = 1. Here remark u > 2 and (5.3).
Next assume a; > 2 and b_; > 2. By (5.5), we have

l<ai<ay<ag<---
and
1<by<bo<bg<---.
Since the condition EMU for mAg,mg
{al, ag, as, . . } N {bfl, b,Q, b,3, .. }

is not empty. Let d be the minimal number of the above set. Since the condition
EMU for mA;z 5 is not satisfied, we know d < mu. Suppose ay = b_y = d. Then
(56) {al, a2,as, . . . ,af_l} H{b_l, b_o,b_3,... ,b_(f/_l)} C {2, 3,...,d— 1}

By (5.3), it is enough to show that the above is the equality, that is, f+ f'—2 = d—2.
Assume the contrary, i.e. d > f+ f'+ 1.

By (5.5), we have a,; > nd—(n—1) and b_,,;y > nd—(n—1). Sinced > f+ f'+1,
we have nd — (n — 1) > n(f + f’) + 1. Therefore we know
(5.7) ang 2 n(f+ ) +1, by >n(f+f)+1

Hence we have

is not satisfied, the set

en(prprrr Sn(f+ )+ 1 engrp Sn(f+f)—1
for any n > 1 by (5.3). By (5.5) and (5.7), we have

Anprr 2 n(f + 1)+ a1, anpro > n(f+f) +az, s anprgony 2 n(f + ) +apa

and

bo(nprrry = n(fHS) b1, boprroy > n(f+f)Fb g, s gy = n(f+f)+0 ().
Then, by (5.6), we know

en(friyre < n(fHf)F2, engrames S n(fHF)43, o0, empnrm—1 < (D) (f+f) -1

It contradicts to (5.4). O
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Definition 5.2. Assume that the condition EMU for mA;; is not satisfied. The

integer d as in Lemma 5.1 is called the minimal degree of mA;z ;.

The above definition is due to He [11].
For integers p, q, we put

p,qlz ={ne€Z|p<n<gq}, p.)z:={neZ|p<n<q}
We put

Py = {(a,n) € 7?

a>0,n>0,
ag > n—+1 ’

a€Z, n>0,
bo—n =>n+1

CYZO,TLZO, _ 2
(o, [au] +n) € S }—{(ajn)EZ
a€Z,n>0,

(@—n,[(@—n)a]l+n) €T }: {(O‘WGZZ

Pp = {(a,n) € 72

Lemma 5.3. (1) Let m be a positive integer. The following two conditions are
equivalent:
(a) The condition EMU is satisfied for mA
(b) 7, X [O,mu)Z C P4 U Pg.

RTACK
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(2) The set N2\ (P4 U Ppg) is finite.
(3) Assume that the condition EMU for mA
integers d and f such that
e mu>d>f >0,
i (f7d) Q/PAUPB
e PAUPRU{(f,d)} 210, flz x [0, d]z,
e PxN PN ([0, flz x [0,d]z) = {(0,0)}.

a3 18 not satisfied. Then there exist

Proof. First we shall prove (1). Remember u > 2 since p is not complete intersec-
tion. Therefore the condition (a) implies a; > 2 and b_; > 2. On the other hand,
assume the condition (b). Since (0,1) &€ P4, we have (0,1) € P and b_; > 2. Since
(1,1) & Pg, we have (1,1) € P4 and a; > 2.

From now on, we assume a; > 2 and b_; > 2. Then we know
2§a1<a2<a3<---,
2§b,1<b,2<b73<“‘,
if (a,n) € Py, then (a+1,n),(a+1,n+1) € Py,
if (a,n) € Pg, then (o — 1,n),(a,n+ 1) € Pp
by (5.5). We choose ¢ such that a, < mu < azy1. Then, by (5.8), the condition (b)
is equivalent to

(5.8)

(Oa aO)a (17 CL1), (27 a?)a R (Q7 aq) € P37
where we put ag = by = 1. It is also equivalent to
bi—a; = a; +1
for i =0,1,2,...,q. Then, the condition (b) is equivalent to
®bi g = a;i+ 1, big1 > a; +2, ..., bg)—ai 41 = ip1 — 1 for i =
0,1,2,...,9—1, and
® by o, > ag+ 1, b4 0, 12>0a5+2, ..., bg_muy2 > mu—1.
It is equivalent to the condition (a).
Next we shall prove (2). For o € Z and n € Ny, we know

a>0

(a,n) € Py <= (o, (oﬂHn)ES‘:*{ 0<n<as— [au].

Since —au > —[au] > —au — 1, we have

a>0 a>0
(5.9) {(a,n) 0<n<aE-u) -1 }CPAC{(a,n) ‘ 0<n<as—7) }
Furthermore we have
(a,n) € Pp <= n 20 — | n=za
Gn) s e (a—=n,[(a=n)a] +n)eT 0<n<(a—n)-[(a—n)l.
By (3.2), we know u — ¢t > 1. By —(a —n)u > —[(a — n)u] > —(a — n)u — 1, we
have

n>a, n>0 n>a n>0

610 e [ S5l 5 0 femefen 2000 )
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By (3.2), we have

—t
u—t—1
Then (2) immediately follows from (5.9) and (5.10).

Next we shall prove (3). If b_; = 1, then (f,d) = (0, 1) satisfies our requirements.
If b1 >2and a; = 1, then (f,d) = (1, 1) satisfies our requirements. From now on,
we assume a; > 2 and b_; > 2. Then (5.8) is satisfied. Let d be the minimal degree
defined in Definition 5.2. Suppose ay = b_p = d. Then d = f + f’ by Lemma 5.1.
We have (0,0) € P4N Pg and (f,d) ¢ PaU Pg since ay =d and by_g = b_p = d.

Since (0,1) € Pg \ P4, we have (0,q) € Pg \ P4 for any ¢ > 0. Since (f,d) &€ Pg,
we have (f,q) € P4\ Pg for any 0 < ¢ < d.

Suppose 0 < p < f. We have (p,a, — 1) € P4 and (p, a,) & Pa. Since

{b,l,bfg, N 7b—(f’—1)} = {2, 3, Ce 7d - 1} \ {al,ag, e ,af,l},

we have a, —1 > b,_q,4+1 and a,+1 < b,_,, . Therefore we have (p,a,—1) ¢ P and
(p,a,) € Pp. Ultimately, we obtain (p,q) € P\ Pa if ¢ > a,, and (p,q) € Pa\ Pp

<l

1< <3s5—u.

if 0 < g <a,p. O
We define
F) = - Kton CF=F/a'F = @ Kran.
L>n2>0 a€Z >n>0

(Oz7 n) S Vo’o VA

By (4.8), F} is a subring of F}. Recall (4.16). We define
Ay =ANEF) = @ Kz

{>n>0
(a,n) € Voo NZ2
(o [a] +n) € §

Recall (4.17). We define

B, :=¢(By) NF, = > K 2.
£>n>0
(04771) c Vo,oﬂZQ
(a—n,[(a—n)u]+n)eT

The above equality follows from (4.15) and (4.17).

Lemma 5.4. Let { be a positive integer. Suppose n = nanp forn € F};*, na € Af
and np € B[
Then we have na € A, and np € B,~.

Proof. Tt is easy to see that the constant terms (the coefficient of ) of 1, n4 and
np are not 0 by (4.8), (5.9) and (5.10).

Since nang € F}, it follows that n4 and np are in F; by (4.8), (4.15), (5.9) and
(5.10). O
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Definition 5.5. For 0 < a < n, we define
Ua,n:{(,y)m) 6%70m22 | 0<m<n}U{(O7n)’(]‘7n)7"'7(a_]"n)}'
We say that

(5.11) (= Y hymTymis 0in Usy

(’y,m)EVoyoﬁZ2
if hy = 0 for (y,m) € Ugp.

Remark 5.6. Suppose that the constant term of ( € F} is 1. Take (a,n) € Voo \
{(0,0)}. We assume that («a,n) € P4 U Pg. We do the following procedure:

e Let ¢ be the coefficient of z,, in (.
(5.12) o If (a,n) € Py, then we multiply 1 — czq, to C.
o If (o,n) € Pg\ P4, then we multiply 1 — ¢z, to C.
Then we know that the element ¢’ obtained after the above procedure satisfies
o (—("is0in Uyy,
o the coeflicient of z,, in ¢’ is 0.
Then we know the following:
(1) Suppose that n € F}* is 0 in U,,,. If U,,, \ Usn C Pa U Pg, there exists
na € A" and np € B, such that nnang is 0 in U, ,,.
(2) Suppose that n € F;” in 0 in U,,,. Assume that (o/,n) € P4 for a < o/ < n.
We know that there exists na € A}™ such that nna =1+ ez, in F, ;” for
some e € K.

Remember that ¢ is the transition function of £;, as in (4.18). The following is
a special case of Cutkosky’s theorem [1].

Proposition 5.7. Assume ch(K)=1p > 0.

Then there exist 4 € A;,EUX and £ € BI’,EUX such that &7° = €46 in FZQEUX for
e> 0.

In particular Rs(p) is Noetherian.

Proof. By Lemma 5.3 (2), we may assume that the second coordinate of each points
in N2\ (P4 U Pg) is less than p®. Then & is 0 in Up,e. By Remark 5.6 (1), we
know that £ nang is 0 in Uppe, for some ny € Al and np € B, . Then we
have & = cny'ng' in Fl., for c€ K*, ny' € AL " and ng' € B~ O
Lemma 5.8. Let K be a field of characteristic 0. Let C' be a local K-algebra with
dimy C' < co. Let m be the mazximal ideal of C'.

Let ¢ € C 1s an element such that ¢ =1 mod m. Let n be a positive integer.
Then there ezists the unique element ¢’ € C such that ¢' =1 mod m and ¢ = ¢.

We omit a proof. Here we give another proof to Theorem 1.1 in [16].

Proposition 5.9. Assume ch(K) = 0. Let m be a positive integer. Assume that
there exist €4 € AL~ and Eg € B!~ such that £™ = E48p in F!,°.
Then there exist a1 € Al and £y € B such that € = Ea1&py in F.~.
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Proof. We may assume that the constant terms of {4, (g are 1. By Lemma 5.8,
there exist &4, € A/~ and &, € B!~ such that their constant terms are 1 and
=€, €™ = €p. Then we have € = £,&% in F!* by the uniqueness. O

Lemma 5.10. Assume that the condition EMU for mAz4 5
d and [ satisfying Lemma 5.3 (8). Suppose that there exist na € Al,,” and np €
Bl " such that €™nang = 1+ cxpq in Fy ™ with c € K*.

Then there do not exist E4 € AL~ and Eg € B! [ satisfying £™ = E4&p in F,~.

is not satisfied. Choose

Proof. Assume the contrary. Then we have

Ea€pnang = (§ana)(Enp) = 1+ cxypq

in Fj,,". Let Uy, be the set defined in Definition 5.5. Assume that both €414 and
Epnp are 0 in U, ,, and the coefficient of z,, in either {4ma or {gnp is not zero
for some o and n. Therefore we have (a,n) € P4 U Pg and (a,n) # (f,d). Since
1 +cxyqis 0in Uy, we know that one of the following is satisfied:

en<d

ea< fandn=d
Therefore we know that only one of P4 and Pp contains («,n). If the coefficient
of o, in €4ma is not 0, then (a,n) € P4. Then (a,n) ¢ Pp and the coefficient
of zo, in (€4ma)(Epnp) is not 0. It is a contradiction. If the coefficient of z,, in
¢gnp is not 0, then (a,n) € Pg. Then (a,n) ¢ P4 and the coefficient of z,, in
(€ana)(€pnp) is not 0. It is a contradiction. O

Lemma 5.11. Assume that the condition EMU for Az is not satisfied. Choose d
and f satisfying Lemma 5.3 (3) with m = 1. Furthermore assume

(5.13) (Z x[0,u)z) \ (PaU Pg) = {(f,d)}.
Then the following conditions are equivalent:
(1) If €nang = 1+ cxpq in Fj. ™ is satisfied for some c € K, na € A" and

np € B&HX, then ¢ # 0.
(2) There do not exist €4 € A and Eg € B! satisfying &€ = £4€p in F!*.

Proof. By Remark 5.6, we can prove that there exist ¢ € K, na € A" and
np € By, satisfying {nanpg = 1+ cxpq in ), ™. Then, by Lemma 5.10, we know
(1) = (2).

Next we shall prove the converse. Assume that (1) is not satisfied. Then there
exist na € A" and np € B, such that &nang =1 in F) ;. By Remark 5.6 (1),
we know that there exist y € A/ and 53 € B,” such that {énangnyny =11in F.*
by the assumption (5.13). Therefore we have & = (nany) ' (ngn) " in F.*. O]

6. CLASSIFICATION OF (a,b,c)’s WHICH DO NOT SATISFY THE CONDITION EMU

We want to classify (a, b, ¢)’s which do not satisfy the condition EMU.
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Remark 6.1. If the condition EMU for mA;; is satisfied for some m > 0, then
R,(p) is Noetherian. One can prove it in the same way as the proof of Proposition 4.6
in [16].

Remark that we may assume ¢; > ¢, _; by exchanging x for y if necessary.

If {, =1or {,_; =1, the condition EMU for Az is not satisfied. In this case,
Rs(p) is not Noetherian by Theorem 1.2 in Gonzélez-Karu [4].

If {4 = 0,—1 =2 and u > 3, then the condition EMU for Aj is not satisfied. In
this case, Rs(p) is not Noetherian by Theorem 1.2 in Gonzélez-Karu [4].

If¢; > 3and ¢,_; > 3, then the condition EMU for A is satisfied by Lemma 5.1.

The remaining case is /1 =n > 3 and £,_, = 2.

t,u,5

In the rest of this section, we suppose that n is a positive integer such that
n > 3.

We want to classify (a,b,c)’s which do not satisfy the condition EMU for (a,b,c)
such that a; =n and b_; = 2.
First we define the sequence of integers

. (2)=() (0)=Cza i) (o)

(fo,90) = (1,1), (fi,91) = (n—1,n—2), (f2,92) = (n* = 2n,n* =3n+1), ....

Here remark that

as

l=fi<fi<fo<--
and
l=90<g1<g2<--.

For ¢ > 0, we have

fi ficN _(n=2 1N (A N (n=21\""(n-11
g 91 ) \n—31 g g ) \n—31 n—2 1
and
(6.1) det ( fi fima ) =1
9i Gi-1
In particular, we have GCD(f;, fi-1) = GCD(fi, g;) = 1.
Since f; = (n —2)fi—1 + gi—1 and g; = (n — 3) fi_1 + gi—1, we know
(6.2) Ji=gi+ fin

for i > 0.
For 7 > 2, we know

63) fi=n—=2)fici+gi1=n—-2)fic1+ fici — fice=(n—1)fic1 — fica.
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We define a; and b; as in (5.2). By Lemma 5.1 and (5.3), the condition EMU is
not satisfied for Az 5 if and only if there exist positive integers f, f’, d such that

[ CLf:b,f/ :d,

L4 {CLl,CLQ, .. ,le,l}H{bfl,b,Q, ce 7b—(f’—1)} = {2,3, C ,d - 1},
e f+ [ =d<u.

Theorem 6.2. Let a, b, ¢ be pairwise coprime positive integers. Assume that p is
not complete intersection. Let n be an integer such that n > 3. Then the following
two conditions are equivalent:

(1) The following conditions are satisfied:
(a) 2% — x*3y' is the negative curve, i.e., uc < v abe,
(b) the condition EMU is not satisfied for A
(c) by =nand b, 1 =2.

(2) There exist A € Ny and 7,0 € N with (v,6) # (1,1) and GCD(v,0) = 1

satisfying the following conditions®:

(a) u="yfr+frt1, ua =79r +6gns1 ,

(b) n—1<35< ULt
n 2f/\+1+1h
(C) 2< —t< T

d) L+5<1.

t,,57

)

We shall prove this theorem in this section.

Definition 6.3. Let f, p1, p2, f', q1, g2 be rational numbers such that f > 0 and
f'>0. Let I'(—f', p1,p2; f, q1, q2) the set of lattice points consisting of

{(,B) €22 |a <0, 2% < p< TN
I’ I’
and
{(a,B) €Z%|0 < a, %wg%.

Lemma 6.4. Let f and f' be positive integers. Let py, pa, q1, o be rational numbers.
For v € Z, we define

e;="{(i,B) € Z*| (i,8) € T(—f,p1,p2; [ a1, 42) }.

Assume that if we sort the sequence e_y,e_pi1,...,ep into ascending order, we
obtain

L2, f+ S+ +1
with eg = f+ f' and e_p = f+ f'+ 1. Let ¢1,¢9,c3,... be the sequence given by
sorting the sequence {e; | i € Z} into ascending order.

(1) Assume that py, ps, q1, q2 are integers. Then we have ¢; =i for any i > 0.
(2) Assume that p1, g1, qo are integers and ps & Z. Then there exists i > 0 such
that

61:1, 62:2, ceey Cl',lzi—l, Cl>'l

6The minimal degree d defined in Definition 5.2 is fx + fai1 in this case.
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Proof. First we prove (1). We have ejy; = ey +¢; = f+ f +¢; for i > 0 and
e_(frpiy =e—p—1+e_; = f+ f +e_;fori > 0. Then we have ey = 2(f + f') and
e_ap = 2(f + f') + 1. Recall

{e_f/,€_f/+1,...,€f}:{172a"'7f+f/+1}'

Therefore, if we sort the sequence e_sp,e_op41,...,e2p into ascending order, we
obtain
L2,....2(f+ f)2(f+ )+ 1.
Repeating this process, we shall obtain the assertion.
Next we shall prove (2). We have efy; =ep+e;,=f+ f +e fori=1,2,...f
and

(64) e—(f’+i) Z €E_yfr — 1 + €_; = f + f, + €_;
for © = 1,2,..., f'. If there exists ¢ such that e_p,s > f + f' + e_;, the assertion
follows immediately. If (6.4) are the equalities for i = 1,2,..., f’, we have ey; =

2(f + f') and e_op = 2(f + f') + 1. If we sort the sequence e_sp,€_op11,..., €
into ascending order, we obtain

L2, 2(f+ f)2(f+ )+ 1L
We repeat this process. The equalities will not hold in the future. O

Lemma 6.5. Let A be a non-negative integer. We put f = fx, f' = faz1, p1 =
2fi, P2 =9, o = (= 1)fa, @ = —gx and I' = T'(=far1, 2511, gavns fo, (0 —
Dfxs—gx)}-

(1) The integers f, f', p1, p2, @1, @2 satisfy the assumption of Lemma 6.4.

(2) The set of lattice points in I with the first component fy is
{(fx =g+ 1), (fr,—gn +2), ., (A, (= 1) fa) }
The number of this set is fx + fri1-
(3) The set of lattice points in I with the first component — fy1 is
{(=Hrr o) (“hsn o + 1), (5 g, 2604) 1
The number of this set is f + fry1 + 1.
(4) The set of lattice points in I with the first component fyi1 is
{(Fr+1, =ar1)s (S = + 1), o, (s, (R = 1) fasn) 1
The number of this set is fyi1 + fare + 1.
(5) The set of lattice points in I with the first component — fy, o is
{(=Frr2s a2 + 1) (g2 a2 +2), o (= fages 2042) 1
The number of this set is i1+ friz-
Proof. (2) and (3) follow from definition immediately.
We shall prove (1) by induction on A > 0.
Assume A =0. We have f'=n—1,py=2n—1),ppo=n—-2, f=1, g =n—-1
and g = —1. Let ¢; be the number of lattice points in I'(— f’, p1, p2; f, q1, ¢2) such
that the first component is ¢. Then we obtain e_,.1 = n+1, e 10 = n — 1,
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€ pi3=n—2,...,e_.1=2,¢ =1, e, =n. Thus the assumption in Lemma 6.4 is
satisfied.
Assume that the assumption in Lemma 6.4 is satisfied for some A > 0. We define

e; = #{(i,8) € Z* | (i, B) € D(=fra1, 2fr1: Gaers Sr, (n = 1), —aa) ),
ef = 7{(i,8) € Z* | (i, B) € T(—Frra, 2frs2, Grv2i Fryrs (0 = 1) frgrs —gas1) }-

Remark
1§e’1§€’2§...

and
/ /
1§6_1S€_2§"'.

By Lemma 6.4 (1), if we sort the sequence {€; | i € Z} into ascending order, we
obtain
1,2, 3 ...
Here we have
(6.5) e, =m=Dhu+on =01+ (Foa =)= o+ e
by (6.2) and (6.3). Furthermore, we have

(6.6) elifA+2 =2fape— P2+ 1=2f o — (fage — fos1) + 1= fapn + Hree + L.
By (6.1), we have
1:det(f’\Jrl f’\>:det< Ko b )
Ix+1 G —9x T Ox+1

Therefore we know
e/f)\Jrl = e/f,)\ﬂ +1=/ i+ Hpe+1
and e/ = ¢, for 0 < i < fiy1. Thus (4) follows from the above equality. By (6.1),

we have
1 = det ( vz ) _ det( —hHh+1 —fage ) '

9r+2  Gr+1 9r+1 9r+2
Therefore we know

6,—f,\+2 = elifHQ —1=fay1 + fHre

and e = e} for —fi2 <i < 0. Thus (5) follows from the above equality. If we sort

2 " " : :
the sequence e” | i€’y 1o.... €}, _; into ascending order, we have

1727"'7f)\+1 +f)\+2 — 1L
By (6.5) and (6.6), we know that (1) holds for A + 1. O
Now we start to prove (1) = (2) in Theorem 6.2. We put
J-1=0.

It is enough to prove the following claim:

Claim 6.6. Assume that (1) in Theorem 6.2 is satisfied. Let A\ be non-negative
integer. Then we have the following:
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(1)x Letting d be the minimal degree of Ny, d does not satisfy fa_1 + fr <d <
Ix+ fasa

(2)x If the minimal degree of N;zs is fx + far1, then there exist v,0 € N with
(7,8) # (1,1) and GCD(~,0) = 1 such that u, ug, t, s satisfy (a), (b), (c),
(d) in (2) in Theorem 6.2.

(3)x If the minimal degree of Ajz 5 is bigger than fx + fai1, then we have

(S U T) N [_f/\+1a f/\]% = F(—f/\+1, 2211, 9ar1s s (n - 1)f/\> —g,\) N [—f/\+1, f/\]%,

where [—fai1, Az = [, Mz X Z={(a, ) € 2% | —fry1 < a < fu}
S
t
T
u
g .
(0,0)

We shall prove this claim by induction on .

First, assume A = 0. Then we know f_; + fo =1 and fo + f1 = n.

Since a; = n, the minimal degree of Az;; is not less than n by (5.8) and
Lemma 5.1. Thus (1), follows.

Since (—1,1),(—1,2) € T, we know

(6.7) SuT)N[—(n—1),1; DT(-1,2,1;1,n —1,—-1) N [—(n — 1),1]}.

Assume that the minimal degree of Azz; is n. By Lemma 5.1, we know b_; = 2,
b_y =3, ..., b_n—1) = n. Thus we know that (6.7) is the equality in this case. Since
(1,-1) ¢ S and (—(n —1),n —2) ¢ T, we know
9o _ U2 g1 n—2
— e =l<u=——< - = :
fO U f1 n—1
Then (a) in (2) follows since GCD(ug,u) = 1 (Proposition 4.8 in [16]) and (6.1).
Here we remark (v,9) # (1,1) since u > n = fy + f1. Since a; = b_(,—1) = n, (b)
and (c¢) in (2) follow. Since z* — x*#y's is the negative curve, (3.2) is satisfied. Thus
(2)p is proved.
Assume that the minimal degree is bigger than n. By (6.7) and ay > n + 2, we
know

b,(nfl) =n+1, b,(n,g) =n-—1, b,(nfg) =n-—2,...,b_1=2, a1=n
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by Lemma 5.1. Therefore only one of (—(n—1),2n—1) and (—(n—1),n—2) belongs
toT.

Here we assume (—(n—1),2n—1) € T. Consider I'(—=(n—1),2n—1,n—1;1,n—
1,—1). Let e; be the number of lattice points in I'(—(n—1),2n—1,n—1;1,n—1,—1)
with the first component 7. Then we have

l<e<ey<---, I<e 1 <eg<---

There exists (—a, 3) € T'NZ?* such that 0 < 3 < a since u > —1. We choose such

(—a,B) € T NZ? with @ minimal. By Lemma 6.4 (1), if we sort e_q, €_q11, - - -

€_1, €g, €1, ..., € (0 =e_, —a — 1) into ascending order, we obtain
1,2,3,....e_a.

Ifi < —a, thenb; >e; >e_,. If 0 <1< a, then a; > ¢; > e_, by the definition of

a and Lemma 6.4 (1). If i > «a, then a; > e_; > e_,. (For ¢ > 0, we have

Y

2n—1 n
e_; Ln—lzJ i+ Ln_lzj—l—
a; > (n—1)i+ 1.
Therefore
. no . on . (n—=1—-n,
e > (n—1)i— > (n—1)i — -
a;i —e_; > (n—1)i Ln_lzJ_(n )i ! — i>0

if n > 3. ) Therefore, if i > o, then a; > e_,. By definition, we have
I(—(n—-1),2n—1,n—1;1,n—1,-1)N[~a,0l; C (SUT)N[~a,0];

=

since b_,, > e_,. Then the condition EMU for A; . - is satisfied. It is a contradiction.

1,5

Therefore (—(n — 1),n — 2) belongs to T. Then we have
Sun)N[-mn—-1),1,=T(-(n—1),2n —2,n—2;1,n — 1, —=1) N [~(n — 1), 1]3.

Thus (3)g is proved.

Next, assume that (1), (2)a, (3)x are satisfied for some A > 0. We shall prove
(Dat1s (2)a+1, (3)ag1- We may assume that the minimal degree of Az is bigger
than f\ + fir1. By (3), we have

(SUT) N [=frg1 Az = D= st 2fw1, Ot fro (= 1) fr, —g5) N [=Frens A2
Then we know
(6.8)
(SUT)N[=frrz, frrlz D D(=Foagt, 2001, 9as1; Fasts (n=1) frst, =g )N [— Fasas Fretls
By (6.1), we have

F(—fwrl, 2f>\+1a9>\+1§ f/\+17 (n - 1)f/\+17 —9/\+1) N (—fA+2, fA—f—l)%;
:F(—f/\+2, Qf/\+2,9/\+2§ f>\+17 (n - 1)f>\+17 —9/\+1) N (—f,\+2, fA+1)%-

By Lemma 6.5 (1), if we sort the numbers of lattice points in each columns of
U(—faves 2fr2: Oar2s Farrs (0= 1) farrs —gas1) N (= fave, fag1)z, we obtain

172737---7f)\+1+f)\+2_1'
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Furthermore we have

(6.9) b_fiio = far1 + fas2

by (6.8) and Lemma 6.5 (5). Since (—fai1,9x+1) € T, we have (far1, —gar1) € S.
Since (—far1,9ar1 — 1) € T, we have (far1, —gar1 + 1) € S. Therefore

(6.10) af, = (n—=1)frs1 + 91 = Hror + foago

by (6.8) and Lemma 6.5 (4). Since the condition EMU is not satisfied for Az 5, we
have
(6.11)

(SUT)N(=frsas fre1)z = D(=frez, 202, 9re2; Hrot, (=1 Frot, —gae)N (= Foras Frot)z

Thus we know that the minimal degree of A
We have proved (1)41.

Assume that the minimal degree of Ajz; is equal to fiy1 + fiye. Then (6.11)
and ay, ., = b_y,,, = fag1 + frge are satisfied, and (6.8) is the equality in this case.
Since (—fa+2, ga+2) € T and (fot1, —ga41) € S, we obtain

ISR U2 Gry2
It u free’
By GCD(ug,u) =1 and (6.1), (a) in (2) follows. Here we know (v, d) # (1, 1) since
u > fog1+ fage. Since ay,,, =b_y, ., = fos1+ far2, (b) and (c) in (2) follow. Since
2" — x%y" is the negative curve, (3.2) is satisfied. Thus (2);1 is proved.

Assume that the minimal degree of Az is bigger than fy;1 + fiy2. Remember
that (6.8), (6.9), (6.10) and (6.11) are satisfied in this case. Only one of ay,,, and
b_y,., is equal to fii1 + fayo.

First assume that ay,,, = fay1 + frge. Since ay,, 11 > fag1 + foge +2 by (5.5),
we know b_g, ., = fay1 + fay2 + 1. Therefore only one of (—fai2,2fr42 + 1) and
(—faz2, gri2) belongs to T. Assume (—fri2,2fy12 + 1) € T. Then we have

(SUT)N[=frya, ]z = T(=faza, 2fagatl, gA}l—sz; Pty (0=1) frn, —gas)N[=fave, froalz
A+

There exists (—«, 3) € T N Z? such that 0 < 8 < % since u > fai1 + fage. We

choose such (—a, 3) € T'NZ? with o minimal. Then we know a > fy o and

(SUT)N[—a, @)y, D T(— frga, 2fapo+1, M; Pty (n=1) fag1, —grs)N[—a, @)y
A+

is bigger than or equal to fyy1+ fiio.

t,u,5

Let e be the number of lattice points in I'(—fiio, 2/ 4o + 1, %;ﬁ\ﬂ, (n —

1) fas1, —gr+1) such that the first component is —«. Then we know b; > b_, > e for
i < —a since (—a, ) € T. Furthermore a; > a, > e if i > a. (Since o > f 0, we
know (—fay1 — 1, gas1) € T and (faz1 + 1, —gas1) € S. Therefore we have

ao > (n—1)a+ 2.
On the other hand, since

2 1
e = L f)\+2+ al — [g)\-&-l -|

2 +1 g
1< a2 A1
P2 I

Fato Frtt

a+1,
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we know

2fate +1 9A+1)
e < — al + 1.
L( Frs2 Fr J

Since
2fxp2+1 N

Iage Frr
we obtain a, > e immediately.) Since b_, > e, we know that the condition EMU for
Ay 5 is satisfied by Lemma 6.4 (2). It is a contradiction. If (—fii2,gxr2) belongs
to T, (3)a41 is satisfied.

Next we assume that 0_y, ., = fay1 + faze and ay, |, > fag1 + fag2 + 1. Since
(=fas1, 9041 —1) € T and (= fay1, 9a41) € T by (3)x, we know (far1, —grp1+1) € S
and (fry1, —gar1) € S. Then we know that S contains (fai1,(n —1)far1 +1). We
know

n—1>2>

+1
SUT D T'(= faya—1,2(foagat1), gAH(]{yf );f,\+1> (n=1) farr+1, —gar)N[=fare—1, fanlz:
Jr
Let €} be the number of the lattice points in I'(— fy 1o—1, 2(fa;2+1), w; fos1, (n—

a1

1)fax+1 + 1, —gxt1) with the first component i. Then e} =~ = ff\+1 + foge + 1,
e = foas1 + fag2, €y, o1 = at1r + fag2 + 2. The last equality follows from

—fat2

(=2 =L +1) € D(=fare = 1,2(farz + 1), %ﬁﬁl);ﬂﬂ; (n = 1) fama +

1, —gxrr1). (If not, the point (— fiyo—1, grro+1) is in the interior of the cone spanned

by (—frs1,9ar1) and (—farz2, grs2). It is impossible since foy3 > fi=n—12> 2
and (6.1).) Here we remark

L(=foare — 1,2(fag2 + 1), ng(;:\\: t s at (= 1) fasn + 1, —gg1) N (= Frges Hren)z,

:F(—f/\+2, 2f,\+2>g,\+2; fA+1, (n - 1)f>\+17 _QA—H) N (—f/\+2, fA+1)2

. , , , . .
Therefore, if we sort € a1 € fyigtar o €y, 1 IDTO ascending order, we have

1727"'7f)\+1 +f)\+2 -1
by Lemma 6.5 (1). Since the condition EMU for A;

1u,3
(SUT)N[=Frez — 1, Ly

=T(—frgo — 1,2(frgz + 1), 9>\+1(j:i:12 +1)

Here remark that T'(—fy,2 — 1,2(fas2 + 1), M% Ha, (=1 frgr+1,—gas1)

a1
satisfies the assumption in Lemma 6.4. There exists (—a, 8) € T'N Z? such that

0< B < %. We choose such (—a, 8) € T N Z? with o minimal. Then we know
a > fro+ 1 and

is not satisfied, we know

chanL (=1 fg+ 1L =) N [=FHae — 1, Hrals

(farz+1)
I

(SUT)N[—a, @)} D T(— frpo—1,2(frsot1), 2 s fans (n=1) fra L, —ga)N[—a, ).
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Then b; > b_, > ¢, if i < —a. Furthermore a; > ¢, > ¢’ if i > «. Since
b_o > €', we know that the condition EMU for A is satisfied by Lemma 6.4. It
is a contradiction. We have completed the proof of (3),41.

We have completed the proof of Claim 6.6 and (1) = (2) in Theorem 6.2.

Assume (2) in Theorem 6.2. Then we have
9r Uz P+
I u a1
and u > fy + for1. By (a), (b) and (c) in (2), we know

(SUT)N (= frrr Az =T(=FHrns 2001 915 fro (= 1) o, —ax) N (=g, Al

and —by, , = fat+far1. By Lemma 6.5, if wesort 1,ay,as,...,ap,0_1,0_,...,b_y,
into ascending order, we obtain

L2, ., h+ =LA+ Hen o+ Hae

Thus the condition EMU is not satisfied for Az . (a) of (1) follows from (d) of (2).
(c) of (1) is clear. We have completed the proof of Theorem 6.2. O

Remark 6.7. Let a, b, ¢ be pairwise coprime positive integers such that Az;
satisfies (2) in Theorem 6.2 with n, A, v, §. Let a; and b; be integers defined in (5.2).
Let e; be the number of lattice points in I'(— fat1, 2fx+1, 9as1; fr, (Rn—1) fr, —gx) with
the first component i. Then we know

e a;,=¢; fori=1,2,...,f\,

® b,i = €_; for i = 1,2,...,f)\+1 —1,

® ap = b*f)url =C_fi1 T 1= f)\ + f)\+1-
Remark that

a1, A2, .., Q5,0 1,00, b p

are independent of v and §.
Remark 6.8. For given A € Ny and 7,0 € N with (v,d) # (1,1) and GCD(~, d)

) 6 - 17
it is possible to find pairwise coprime positive integers a, b, ¢ satisfying (a), (b), (c),
(d) in (2) of Theorem 6.2 as follows.

We put u = vfx + 6far1, u2 = v9n + 6grt1, U = —uz/u, 8" = (71_1}#7 th =
—Zf;%:rl. Consider the triangle Ay 7 . Then the sequence ¢, £5, . .. in Definition 1.1
is equal to

1727"'7f)\+f)\+1_17f)\+f)\+1+17f)\+f/\+1+17""

Then the condition EMU for Ay 3 ¢ is satisfied by Lemma 5.1. Consider the convex
hull P of Ay ze N Z2. Let B be the number of lattice points in the boundary of P.
Let I be the number of lattice points in the interior of P. Since the condition EMU
is satisfied, we know

u(u+ 1)

B+I>1+(1+2+--4+u)+1=2+ 5
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It is easy to see B < u+ 1. Then, by Pick’s theorem, we know

B u+1 u(u+1) w?+1
Apav| >IPl=241—1>% 2 oy MU yylog= >4
Bl 2171 = 5112 5t {o e M) ) tl
Then we have
1 1
< 1.

s—u u-—t
We choose sufficiently near s < s’ and ¢ < ¢’ (see Corollary 2.2), we can find a, b, ¢
satisfying the requirement. (The sequence /1,05, ... of Aj; 5 is equal to

L2, K+ hHha =LA+ hen v+ s
Therefore the minimal degree is equal to f\ + fiy1.)

7. A PROOF OF THEOREM 1.2
We shall prove Theorem 1.2 in this section.

Lemma 7.1. Let K be a field of characteristic 0. Let n and A be integers such that
n>3 and A > 0.

Then there exists pairwise coprime positive integers a, b, ¢ satisfying following
conditions:

(1) Rs(p) is not Noetherian.

(2) The condition (2) in Theorem 6.2 is satisfied with n, A\, v =2, § = 1.
(3) The sequence 0\, 0, ... L in Definition 1.1 is equal to

s htha—LA+hen Mt hes At ha+2, i+ +3,0 20+ i
if A >0, and
L2, .o+ Hha =LA+ Han v+ i
if A=0.
Proof. First we assume A = (0. By Remark 6.8, we can find pairwise coprime positive
integers a, b, c¢ satisfying (2) in Theorem 6.2 with n, A =0, v = 2, § = 1. The

minimal degree is equal to fy+ f; = n. In this case, u = 2fy + fi = n+ 1. Therefore
(3) in Lemma 7.1 is satisfied by Lemma 5.1. In this case, by Remark 6.7,

ap = n, b,1:2, b,2:3, ceey bn,lzn.

We know that Rs(p) is not Noetherian by Theorem 1.2 in [4].

Next we assume A > 0. Consider I'(— fai1,2fx11, 9ax1; fr, (R — 1) fx, —gn). Let e;
be the number of lattice points in I'(— far1, 2541, 9ar1; fr, (R — 1) fr, —gn) with the
first component . If we sort {e; | i € Z} into ascending order, we obtain

1,2,3,. ..
by Lemma 6.5 (1). Put v/ = —%. Consider A_3, (,—1). Then we have

(SUT)NZ? CT(—Frets 2fri1: Orits fr, (n = 1) fr, —gn)-
We define a;, b; as in (5.2).
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Then we have q; < e¢; and b_; < e_; for ¢ > 0. Remark
> by > b > > b o> > 1< <a << < apg <

and remember (5.3). The sequence {1, £y, ..., log, 1y,,, defined in Definition 1.1 is
equal to

ap, ag, ..., @, b_g, ..., b_g, b_y, 1
for some 7, k such that j +k+1=2f, + fir1. Since
ag, =b_p =+ Hr,
we know j > f) and k£ > fy.1. We have

a; = €; fOI"l'Il,Q,...,Qf)\—l—f)\+1—1

and
€_; i:1,2,...,f)\+1—1,
b—i - €—fry1 — INEES f)\+17
e i=fart+ L. A+t o — L
Then we know that the sequence ¢}, 05, ..., ’wale for A_s. (n—1) defined in

Definition 1.1 is equal to (7.1) by Lemma 6.5 (1). Here remark that this sequence
does not end at fy + fay1 by fo > 1 (since A > 0). Therefore A_5,/ ,—1) has
a column with 2f\ + f\,1 lattice points. Then it is easy to see that there exists
pairwise coprime positive integers a, b, ¢ satisfying following conditions:

¢ Aoy - N 72 = AizsN 72, in particular t < =2, v’ =u, n — 1 < 5.
o |Azas| > 2/ + fre1)?/2.

By the second condition, we know that z* — 2%y™ is a negative curve. Thus (2) in
Theorem 6.2 is satisfied for n, A, v =2, = 1. Here u = 2f\+ a1, us = 29+ grs1-

Assume that R,(p) is Noetherian. By Proposition 5.9 (Theorem 1.1 in [16]), there
exists a Laurent polynomial

g€ Z Kvw’ (v —1,w—1)" C K[p*', wt]
(.B) €A 7 sNZ2
such that the constant term of g is not 0. We know that the coefficient of v*w™"2
in g is not 0 since this curve does not meet the negative curve. Then we know that
g is irreducible in K[v*! w*!] by Lemma 2.3 [6]. Consider the convex hull P of
AtmsNZ?. Let Q be the Newton polygon of g. Then @ C P. The number of lattice
points in the boundary of P is u+1 since A_s v (1) NZ? = A;. .NZ% Here remark

t,u,5



36 TARO INAGAWA AND KAZUHIKO KURANO

that each column has just 1 point in the boundary of P as in the picture below.

A

\
\
\\

\
n—1 \

\—2
A72,u’,(n71)

\

(0,0)

S|

(u, —us)

The number of lattice points in P is
u(u+1)
2
by (7.1). Therefore the number of lattice points in the interior of P is
u(u+ 1) u(u — 1)
2 2
Then, by Pick’s theorem, we have

u+1 u(u —1) u?—3  u?
<|P|= 1) —1= v

I+ (1424 + 2+ far) — 1=

—(u+1)= - 1.

Since ¢ is irreducible, g is a u-nct in the sense of [14]. The number I of lattice points
in the interior of @) is less than or equal to that of P. Therefore we have

r<e=b
2
It contradicts to Lemma 4.1 in [14]. Therefore R,(p) is not Noetherian.
We have completed the proof of Lemma 7.1. O

Now we start to prove Theorem 1.2. If the condition EMU is satisfied for (a, b, c),
the symbolic Rees ring of p is Noetherian by Proposition 4.6 in [16]. Here we shall
prove the converse.

Assume that the condition EMU for Az 5 is not satisfied. Let n and A be integers
such that n > 3 and A > 0. We may assume that ¢, = n and ¢, ; = 2 as in
Remark 6.1. We shall consider pairwise coprime positive integers a, b, ¢ satisfying
(2) in Theorem 6.2 for the fixed n, A and some 7, 6. Remark that the minimal
degree is f\ + far1. We put d = f\ + fas1. Consider P4 and Pp defined just before
Lemma 5.3. Consider

(7.2) Pan(Z x [0, d]z)
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and
(73) PB N (Z X [0, d]Z)
(7.2) and (7.3) are determined by the sequences ay, as, ..., ay, = d and b_y, b_o,

...y b_p., = d. Therefore (7.2) and (7.3) are independent of the choice of v and §
(see Remark 6.7).

By Lemma 5.3 (3) and Remark 5.6 (1), (2), there exist 941,742 € A, ;" and
nBa1,MB2 € Bl ™, such that

(I+x)nainpr =1+ qay, g in Fj "
and
wnaonpe =1+ ey qin Fj~

for some integers qi, ¢2.” Then, for any integers h; and ho, we obtain
(7.4)
(1) w" (nhnl3) (i) = Q+qas, )" (g, .0)" = 1+ (hqi+hag)zs, g

in Fj, "
Put d' = gx+gx41. Now consider A_y _ g /q,(n—1). Considering I'(— fat1, 2fx11, 9415 fr, (n—
1) fx, —g»), we know that the sequence 7, ¢, ..., ¢! given in Definition 1.1 is 1, 2,

..., d. In particular, A_y _y/q,n-1) has a column that has d lattice points. Then it
is easy to see that there exists pairwise coprime positive integers a, b, ¢ satisfying
following conditions:
o Ay _yiam-nNZ*=A
o [Njzs| > d?/2.
By the second condition, we know that z* — %' is a negative curve. Then the
condition EMU for Az ; is satisfied and Oy (abH — uE)|,c ~ Oyuc by Remark 4.9,
Lemma 5.3 and Remark 5.6. Therefore, by Corollary 3.3, we have Oy (m/(abH —
UE)) e = Opruc for any m’ > 0. Hence there exists ng € A, “ andng € B ,~
such that

NZ2, in particular f < —2, —d'/d =u, n—1 < 5.

1,5

1,5

(1 + 2)™ =" = nump in ', *
by Proposition 4.8. Here suppose m’ > 2. Then we know m/u > d + 1 and the
condition EMU is not satisfied for m’A;z; ;. Then we have

m'ug + (—m'ug)ga = 0
by Lemma 5.10 and (7.4). Thus we have ug; — ugqa = 0. Since GCD(u, uy) = 1, we
know
@1 = quz = q(gr + gr41), G2 = qu = q(fx + fat1)

for some integer q.

"The integers ¢; and ¢» depend only on n and A. They are independent of v and §. Here we
assume that v and ¢ are positive integers. (We do not assume (v, 9) # (1,1).)

If —d < a < d, then [au] is independent of v and & by (6.1), where u = —;’?iiigfcii. By (7.2)

and (7.3), we know that the rings F;, |, A, |, B}, are independent of v and 4.
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On the other hand, consider the pairwise coprime positive integers satisfying
Lemma 7.1. By the condition (3) in Lemma 7.1, we know that (5.13) is satisfied.
Then, by Lemma 5.11, we know

Q1(2fx + fog1) + (=29 — gag1) # 0.

In particular, we obtain ¢ # 0.
Here let v and 6 be positive integers such that GCD(v,d) = 1 and (v,0) # (1,1).
Then we have

(v fx+ 0 as1) + @2(=79x — 6gr11)
=q{(gr + gr+1)(Vfx + 0 fas1) + (fa + For) (=795 — dga41) }

Y+ fr+ Ha
=g X det
4 ( Y +0gxr+1 ga + Gat1

_ I v o1
=q X det ( O Ghor x det 51
20

by the choice of v and d, (6.1) and ¢ # 0. Then, for pairwise coprime positive
integers a, b, ¢ satisfying (2) in Theorem 6.2 with n, A, 7, d, the symbolic Rees ring
Rs(p) is not Noetherian by Lemma 5.10.

We have completed the proof of Theorem 1.2. O
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