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ABSTRACT. In this paper, we shall study finite generation of symbolic Rees rings
of the defining ideal p of the space monomial curve (t¢,t° t¢) for pairwise co-
prime integers a, b, c. Suppose that the base field is of characteristic 0 and the
above ideal p is minimally generated by three polynomials. In Theorem 1.1, under
the assumption that the homogeneous element £ of the minimal degree in p is a
negative curve, we determine the minimal degree of an element 7 such that the
pair {&,n} satisfies Huneke’s criterion in the case where the symbolic Rees ring is
Noetherian. By this result, we can decide whether the symbolic Rees ring Rs(p)
is Notherian using computers. We give a necessary and sufficient conditions for
finite generation of the symbolic Rees ring of p in Proposition 4.10 under some
assumptions. We give an example of an infinitely generated symbolic Rees ring of
p in which the homogeneous element of the minimal degree in p® is a negative
curve in Example 5.7. We give a simple proof to (generalized) Huneke’s criterion.

1. INTRODUCTION

Let px(a,b,c) be the defining ideal of the space monomial curve (¢, ¢° ¢¢) in K3,
where K is a field. The ideal px(a,b,c) is generated by at most three binomials in
K|[z,y, z] (Herzog [9]). The symbolic Rees rings of space monomial primes are deeply
studied by many authors. Huneke [10] and Cutkosky [2] developed criteria for finite
generation of such rings. In 1994, Goto-Nishida-Watanabe [7] first found examples of
infinitely generated symbolic Rees rings of space monomial primes. Recently, using
toric geometry, Gonzélez-Karu [5] found some sufficient conditions for the symbolic
Rees rings of space monomial primes to be infinitely generated.

Cutkosky [2] found the geometric meaning of the symbolic Rees rings of space
monomial primes. Let Pg(a,b,c) be the weighted projective surface with degree a,
b, c. Let Xk(a,b,c) be the blow-up at a point in the open orbit of the toric variety
Pk (a,b,c). Then the Cox ring of X (a,b, ¢) is isomorphic to the extended symbolic
Rees ring of the space monomial prime pg(a, b, ¢). Therefore, the symbolic Rees ring
of the space monomial prime pg(a,b,c) is finitely generated if and only if the Cox
ring of Xx(a,b,c) is finitely generated, that is, Xk (a,b,c) is a Mori dream space.
A curve C' on Xg(a,b,c) is called a negative curve if C? < 0 and C' is different from
the exceptional curve E. Here suppose vabec ¢ Q. Cutkosky 2] proved that the
symbolic Rees ring of the space monomial prime pg(a,b, c) is finitely generated if
and only if the following two conditions are satisfied:
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(1) There exists a negative curve C.
(2) There exists a curve D on Xg(a,b, ¢) such that C' N D = ().

All known examples ([7], [5]) of the infinitely generated symbolic Rees rings of
px(a,b, c) satisfy the following conditions:

(I) there exists a negative curve C' such that C.E = 1.
(I) the characteristic of K is 0.

In this paper, we give an example of an infinitely generated symbolic Rees ring
such that there exists a negative curve C' with C.E = 2. Furthermore, in the case
where both (I) and (II) as above are satisfied, we determine the minimal value of the
degree of the curve D which satisfies the condition (2) as above in the case where
the symbolic Rees ring is finitely generated.

The existence of negative curves is a very difficult problem, that is deeply related
to the Nagata conjecture (Proposition 5.2 in Cutkosky-Kurano [3]).

In the rest of this section, we state the results of this paper precisely.

Let a, b, ¢ be pairwise coprime integers. We regard the polynomial ring S =
Klz,y,z] as a Z-graded ring by deg(z) = a, deg(y) = b and deg(z) = c¢. Let
px(a,b,c) be the kernel of the K-algebra homomorphism

¢KS—>K[ﬂ

given by ¢k (z) = t*, dx(y) = t°, ¢k (z) = t¢. If no confusion is possible, we simply
denote px(a,b,c) by p.

By a result of Herzog [9], we know that pg(a,b, c) is generated by at most three
binomials. We define s, ¢, u to be

sa = min{Na N (Nob + Nyc)},
(1.1) tb = min{Nb N (Nya + Nyc) },
uc = min{Ne N (Noa + Ngb) },

where N (resp. Ny) denotes the set of positive integers (resp. non-negative integers).
Let t1, uy, S2, us, S3, t3 be non-negative integers such that sa = t1b + uic, tb =
Soa + ugc, uc = sga + t3b. Then pg(a, b, c) is minimally generated by three elements
if and only if s, t, w > 2. When this is the case, pg(a, b, ¢) is minimally generated
by three elements

(12) :L,S _ ytleI, yt _ xSQZUQ’ Zu _ x83yt3’

and t1, uy, S9, usg, S3, t3 must be positive integers satisfying s = sg + s3, t = t1 + t3,
U = U + Usg.
For a prime ideal P of S, we define the symbolic Rees ring of P to be

R4(P) = ®,5oP™T" C S[T),

where P = P"Sp N S is the nth symbolic power of P and T is an indeterminate.
Here, Rs(P) is a Noetherian ring if and only if R4(P) is finitely generated over S
as a ring.
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In Section 2, we give a simple proof to Huneke’s criterion [10]. We slightly general-
ize Huneke’s criterion here. Furthermore, we develop the method of mod p reduction
introduced in Goto-Nishida-Watanabe [7].

In Section 3, we give a proof to the following theorem:

Theorem 1.1. Let a, b, ¢ be pairwise coprime positive integers. Assume the follow-
ing three conditions:

(i) K is a field of characteristic 0,
(i) pr(a,b,c) is minimally generated by the three elements as in (1.2),
(ili) ue < Vabe.
Then Ry(pr(a,b,c)) is a Noetherian ring if and only if there exists n in [p™]y
such that z* — z%y" and n satisfy Huneke’s condition [10] (see Theorem 2.5), that
18,

(1.3) Cs(S)(x, 2" — ™y m)) = u-Ls(S/(x) +p)
holds.

The condition (iii) as above implies that z* — x®y"# is a negative curve, that is,
there exists a negative curve C' such that C.E = 1. Theorem 1.1 says that there
exists a curve D such that DNC = 0 and D ~ abA—uFE if and only if Rs(pg(a, b, ¢))
is a Noetherian ring, where A is an Weil divisor on X satisfying Ox(A) = 7*Op(1).

We emphasize that it is possible to verify whether there exists 7 in [p("],, satis-
fying (1.3) as above using computers. We shall prove this theorem using the mod p
reduction as in Goto-Nishida-Watanabe [7], and Cutkosky’s methods [2] in charac-
teristic p > 0. The most important point is that a negative curve is isomorphic to
P} in this case.

In Section 4, we introduce the condition EU. In Ebina [4] and Uchisawa [12], the
condition EU was defined and they proved that the condition EU is a sufficient con-
dition for finite generation under the assumptions (i), (ii), (iii) in Theorem 1.1. For
the convenience of the reader, we shall give a proof of it in this paper. Furthermore,
in the case where u < 6, we show that the condition EU is a necessary and sufficient
condition for the finite generation of the symbolic Rees ring of p in Proposition 4.10.

In Section 5 we give an example of infinitely generated symbolic Rees ring of p
where the homogeneous element of the minimal degree in p® is a negative curve in
Example 5.7. We emphasize that one of the minimal generators of p is a negative
curve in all known examples of infinitely generated R (pg(a,b,c)), except for this
example.

2. HUNEKE’S CONDITION AND MOD p REDUCTION

Let S = K|[xz,y, 2|, where K is a field and z,y, z are indeterminates. We regard
S as a Z-graded ring putting suitable weights on z,y and z. We set m = (z,y, 2)S
and R = S,. Let I be a homogeneous proper ideal of S satisfying the following
conditions;

e () + I is m-primary,
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o Assg S/I = Asshg S/1 := {p € AssgS/I | dim S/p = dim S/I}, and
e [, is generated by 2 elements for any p € Asshg S/1.

Then S/I is a Z-graded Cohen-Macaulay ring of dim S/ = 1. If we replace z in
the first assumption stated above with y or z, it can play the same role as x in
the arguments of this section. So homogeneous prime ideals of height 2 are typical
examples of I. For any n € Z, we set

™= () pns),

p€Asshg S/1

where I denotes the ideal (I"), = (I,)" of S,. Then we have AssgS/I™ =
Asshg S/I if n > 0, and the equality [ (") = " g 2% holds for i > 0, which means
that 1™ is a homogeneous ideal of S and (I), = I", where I denotes the ideal
(I™)y = (I;)" of S,. Moreover, we set

Ri(I) = > 11" C S[T),

n>0

RL(I) = > I™T" C S[T,77"], and
nez

Gs(I) = RUD/T'RU) = Duzo I /17,

where T is an indeterminate and I = S for n < 0. Let us call R (I ) the symbolic
Rees ring of 1.

We set a = I, = IR. It is easy to see that R/a is a Cohen-Macaulay local ring
of dimR/a =1 and Assg R/a = Asshgr R/a = {pR | p € Asshg S/I}. Moreover, for
p € Asshg S/1, we have a,r = I,, which becomes a parameter ideal of Ryp = Sy.
For any n € Z, we set

a = ﬂ (b N R).
PecAsshr R/a

Then we have a™ = I R and Assiz R/a™ = Asshgp R/aifn > 0. Asa(™ = a” :p 2
holds for i > 0, we have (a(), = a?. The R-algebras R,(a) and G,(a) are derived
from R4(I) and G,(I) respectively applying R ®g *. If Rg(a) is finitely generated,
then there exists 0 < m € Z such that a™®) = (a(™)" for any n € Z. This equality
implies 7™ = (I(™)" since 10" O (1) and (I™)" is a homogeneous ideal.
Thus we see that R([) is finitely generated if so is Rs(a). The converse of this
assertion holds obviously.

For a proper ideal J of S such that S/J is Artinian, we have fg(S/J) >
lr(R/JR), and the equality holds if and only if J is m-primary, which holds if J is
homogeneous.

The purpose of this section is to review the condition on I for its symbolic Rees
ring to be finitely generated, which was originally given by Huneke [10] in the case
where [ is a prime ideal of a 3-dimensional regular local ring. Furthermore, using
mod p reduction technique for prime numbers p > 0, we give a condition on I for
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Rs(I) to be infinitely generated, which is a modification to the method introduced
in [7].
Let us begin with the following

Proposition 2.1. Let 0 < k.0 € Z, £ € I®) and n € IY). Then we have
Cr(R/(z,§,n)R) >kl -Ls(S/(x) + 1),
and the equality holds if and only if a C \/(&,n)R and

gSp(Sp/(ﬁan)Sp) =kt gsp(Sp/[p)
for all p € Asshg S/1I.

In order to prove Proposition 2.1, let us recall the following fact.

Lemma 2.2. Let A be a 2-dimensional Cohen-Macaulay local ring and @ a param-
eter ideal of A. Let 0 < k.l € Z, £ € QF and n € Q°. We assume that £,1 is an sop
for A. Then we have

Ca(AJ(Em)) > k- L4(A)Q),
and the equality holds if and only if one of the following conditions, which are equiv-
alent to each other, is satisfied;

(1) QT C /(ET*, nT*)R(Q), where R(Q) = 3,5, Q"T™ C A[T],
(2) T, 0T* is an sop for G(Q) = R(Q)/QR(Q),
(3) Qk-ﬁ-f—l — gQ@—l + an—l;
(4) Q"N (&n)A=EQ" " +nQ " for any n € Z.
Proof. We set J = (£,1%)A. Then we have
kC-La(A/(€m)) = Ca(A)T) = e;(A),
where e;(A) denotes the multiplicity of A with respect to J. Because J C Q*, it
follows that

es(A) = eque(A) = (k0)* - eq(A) = (k0)* - £a(A/Q).

Hence we get the required inequality. Moreover, we see that the equality holds if
and only if J is a reduction of Q' which is a condition equivalent to (1). The
equivalence of the conditions (1) and (2) is obvious. Let us notice that G(Q) is
isomorphic to a polynomial ring with 2 variables over A/Q), so its homogeneous sop
is always a regular sequence, which implies the equivalence of the conditions (2) and
(4). Moreover, if the condition (2) is satisfied, it follows that G(Q)/(£T*, nT*)G(Q)
is an Artinian Z-graded ring whose a-invariant is k + ¢ — 2 (cf. [8]), so the equality
of the condition (3) holds. Finally, if the condition (3) is satisfied, we have

(QT)IH-E—l C ng . QE—lTE—l =+ nTﬁ X Qk—lTk—l C (€Tk, nTE)R(Q),
and hence the condition (1) is satisfied. O

Proof of Proposition 2.1. We may assume that (z,£,n)R is mR-primary. As
R/(&,m)R is a Cohen-Macaulay R-module, for which z is an sop, we have
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Here we notice that pR € Asshg R/(£,n)R for any p € Asshg S/I. Hence, using
additive formula of multiplicity and Lemma 2.2, we get

exR(R/(ga n)R)) = Z pr( RP/(&) n)RP) ’ e:cR(R/P)

PecAsshr R/(§n)R

> Y L5(S/(€m)Sy) - exr(R/pR)

pEAsshg S/1
> >kl ls,(Sy/T) - exn(R/pR)
pEAsshg S/1
= kl-eyr(R/a)
= kl-lg(R/(x)+a)
= kl-ls(S/(x)+1).
Thus we get the required inequality. Moreover, we see that the equality holds if
and only if Asshr R/(§,n)R = Asshp R/a and (g, (Sp/(§,1)Sp) = k€ - Ls,(Sp/1y)
for all p € Asshg S/I. Since a C +/(&,n)R holds if and only if Asshr R/(&,n)R =
Asshg R/a, the proof is complete. O

Definition 2.3. Let 0 < k, £ € Z,£ € I™ and n € I®¥. We say that ¢ and 7 satisfy
Huneke’s condition on I (with respect to z) if

Cr(R/(z,&nR) = k- Ls(S/(x)+1).
When this is the case, for any 0 < i,j € Z, & € I*) and ' € I also satisfy

Huneke’s condition on [I.

Even if there exist elements satisfying Huneke’s condition, those elements may
not be homogeneous. Although the existence of homogeneous elements satisfying
Huneke’s condition is not clear, it can be verified easily in special cases. For example,
the following remark implies that if £ and 7 satisfy Huneke’s condition and & = y*
mod z.5 for some 0 < ¢ € Z, then we can choose homogeneous parts of £ and 7 so
that they also satisfy Huneke’s condition.

Lemma 2.4. Suppose § € S and § = y* mod xS, where 0 < i € Z. Let & be the
homogeneous part of & containing y' as a term. Then the following assertions hold.

(1) (#,6)8 = (,£)8 = (z,9')S.

(2) For anyn € S, we can choose its homogeneous part 1 so that
ls(S/(x, &) = tr(R/(z,§,n)R).

Proof. The assertion (1) holds obviously. Let us verify the assertion (2). We may
assume 1 & (z,y)S. Then, as z,y,n is an R-regular sequence, we have

(r(R/(x,&,mR) = (r(R/(z,y",nR) =i - Lr(R/(z,y,n)R).
We write

n=ao;2 + a2t 4+ mod (z,9)S,
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where 0 < j € Z and o, a1, ... are elements of K with a; # 0. Since o + 12+
- is a unit of R, we have

Cr(R/(z,y,m)R) = lr(R/(2,y,2))R) = j.
Thus we get
(r(R/(x,§,m)R) = ij.
Let 1/ be the homogeneous part of 7 containing «;z7 as a term. Then, as ' = ;27
mod (z,y)S, it follows that

Cs(S/(a, €)= Ls(S/ (') =i Ls(S/(x,y,27)) = ij.
Thus we get the required equality. O

Theorem 2.5. The symbolic Rees algebra Rs(1) is finitely generated over R if and
only if there exist elements in I®) and I'Y satisfying Huneke’s condition on I for
some 0 < k,l € Z.

Proof. First, let us assume that Rg(I) is finitely generated. Then there exists a
positive integer m such that 10" = (1) for any n € Z. We set b = a™. Then,
for any 0 < n € Z, we have a™® = b", which means depthy R/b"™ = 1. Hence, by
Burch’s theorem (cf. [1]), we see

2=htrb < A\(b) <3 — ir;%{depthR/b”} =2,

where A(b) denotes the Krull dimension of R/m ® G(b), which is called the analytic
spread of b. Thus we get A(b) = 2. Hence we can choose 0 < 4,5 € Z, £ € (™)
and € 1) such that £1°, 7TV is an sop for R/m ® G(b). (Here, we notice that
we don’t have to assume that K is infinite since we don’t require i = j = 1.) Let us
take r > 0. Then we have b” = £b"~* + nb" 7, which means a™ C (£,n)R, and so
a C /(& n)R. Moreover, if p € Asshg S/I and mr < n, we have

Iy = Bl = (€63 bl )y = €

which means that {7, nT™ is an sop for G(I,). Therefore by Proposition 2.1 and
Lemma 2.2, it follows that & and 7 satisfy Huneke’s condition on 1.

Next, we assume that there exist 0 < k, £ € Z, £ € I*) and n € 1) such that ¢ and
n satisfy Huneke’s condition on I. We set m = k¢, b = a(™ and ¢ = (¢°,7*)R C b.
Let us look at the exact sequence

0— ¢"/bc" — R/bc" — R/¢" — 0

of R-modules, where r is any non-negative integer. Since &/, n* is an R-regular
sequence, ¢" /¢’ is R/c-free, so ¢"/b¢" = R/b ®p ¢"/¢" T is R/b-free, which means

Assgc"/bc” = Assg R/b = Asshy R/a.
On the other hand, by Proposition 2.1 we have
Assg R/¢" = Asshg R/¢ = Asshg R/a
since ¢ and 7* also satisfy Huneke’s condition on I. Thus we see
Assg R/bc" = Asshg R/a.
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Now we take any P € Asshg R/a, and write P = pR, where p € AsshgS/I. Then

by Proposition 2.1 and Lemma 2.2, we have I2"~! = 1"~ 4 9F I/~ which means

b% = (bc)p, and so b = (bc")p. Hence we get

amtm = () (e NR)= ] ((b")pNR)=bc" C b C gl
PeAsshg R/a PeAsshg R/a

and hence a™*™ = be¢" = b™'. Thus we see that the m-th Veronese subring

of Rs(a) is generated in degree one. Therefore R4(a) is Noetherian by [6, Lemma
(2.4)]. Then R(I) itself must be Noetherian. O

Lemma 2.6. Let 0 < k, 0 € Z, £ € I™ and n € I). Suppose that & and n satisfy
Huneke’s condition on I. Then the following assertz'ons hold.
(1) Ry(a)r =/ (ET*, nTYR4(a), and hence Gs(a)y C /(ET*, nT*)Gs(a).

(2) a1 C (€,m)R.

(3) al N (¢, n)R —§a” ¥+ na=* for any n € Z.
(4) a

(5)

™A EnR = ™R 4 a0 ifn < k+ 0.
If k=1 or 2, then we have

a™ N (g n)R = &a"F) 4 paln=h

for any n € Z, which means that ET% nT* is a reqular sequence on Gs(a),
and hence grade Gs(a); = 2.

Proof. (1) We set m = kf,b = a™ and ¢ = (¢, 7F)R. Then, as is stated in the
proof of Theorem 2.5, we have a(™+™) = p"*! = b¢" for any 0 < r € Z. Let us take
any 0 < n € Z and p € a™. Then we have p*™ € a(m@n-—1tm) — p2n — pe2n-1 C
cb2n—1 — £€b2n—1 + Ukb?n_l C fCl(an_k) 4 na(2mn—€)7 S0

(an)Qm c ng . a(?mn—k)T2mn—k + nTZ . a(2mn—€)T2mn—€‘

Hence we get the assertion (1).

(2) Let us take any P € Asshy R/a and write P = pR, where p € Asshg S/1.
Then, as Rp = S5, and ap = I,, by Proposition 2.1 and Lemma 2.2, we have
akt= 1 = tabt +nakt C (€, n)Rp. Therefore we get

atH = () (@RS () (EmReNR) = (Em)R

PcAsshr R/a PcAsshr R/a

(3) Since € € I¥ and n € I’, the inclusion a” D £a” % + na”~* holds obviously. So

it is enough to show
@ N (& Rp = ap™ + na

for any P € Spec R satisfying £a™ % +na"* C P and x € P. Such a P must contain
a since a C /(&,n)R, so there exists p € AsshgS/I such that P = pR. Then
by Proposition 2.1 and Lemma 2.2, we get the required equality as Rp = S, and
ap = I

(4) Let n<k+/{and p € a™ N (£n)R. We write ¢ = &u + nu, where u,v € R.
Since ¢ € a? N (£,n) R, = &a™ % 4+ na”~¢ by (3), there exist & € a”* and 3 € a?~*
such that ¢ = £a + nB. Here, we take i > 0 so that z'c € a" % and 28 € a"*.
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Then we have z'(Su + nv) = x'p = 2'(Ea + np), so &(z'u — 2'a) = n(z'f — x'v).
Since &, 7 is an R-regular sequence, it follows that z'u — x'a € nk < a( ) C a(n=k)
and '8 — z'v € (R C a® C a0, Hence z'u € a» % and z'v € a9, which
means u € a” % and v € a9, Thus we get ¢ € Ea® ) 4+ a9,

(5) Let k=1 or 2. By (2) and (4), it is enough to show

assuming n > k + ¢. We take positive integers m and r such that n — ¢ = km — r
and 0 < r < k. Then m > 2 and r is 0 or 1. Since ™ € I%,m) and n e 10 also
satisfy Huneke’s condition on I and km + /¢ —1 < km+{—r =n < km + {, we
have a™ C (€™ 7)R by (2) and a™ N (€™, n)R = £mal"") + na™=" by (4). Let
us notice that ¢ ta®™ C a® k) as k(m — 1) + ({ —r) = n — k. Thus we see
a™ C €a™® 4+ a9 Since the converse inclusion is obvious, we get the required
equality. O

Definition 2.7. Let 0 < k € Z and ¢ € I®. We denote by HC(I; k, &) the set of
positive integers ¢ for which there exists n € ] e) such that € and 7 satisfy Huneke’s
condition on I.

Remark 2.8. Let k£ and & be as in Definition 2.7. If £ = %* mod xS, where
0 <i € Z, and £ is the homogeneous part of ¢ containing 3’ as a term, we have
HC(I; k&) = HC(I; k,£') by Lemma 2.4 (1).

Proposition 2.9. Let k = 1 or 2, and let € € I®. Suppose that € = y* mod x5
for some 0 < i € Z and HC(I;k,&) # ¢. We set m = min HC(I; k,§). Then the
following assertions hold.
(1) HC(L; k,§) = {m, 2m, 3m, - - }.
(2) SHI™T" |1 <n<m— 1}] C R.(D).
(3) If there exist elements in I(’“/ and 1Y) satisfying Huneke’s condition on I
for 0 < K' 0 € Z, we have

SH{I™T™ |1 <n < max{k 0,k +0 —2}}] = R,(I).
In particular,
SHI™MT™ |1 < n < max{k,m}}] = R.(I).

Proof. By Remark 2.8, we may assume that £ is homogeneous. Then by Lemma
2.4 (2), we can choose a homogeneous element 1 € I such that ¢ and 7 satisfy
Huneke’s condition on 1.

(1) We obviously have HC(I; k,&) 2 {m,2m,3m,--- }: see the remark after Def-
inition 2.3. In order to show the converse inclusion, we suppose that there exists
¢ € HC(I;k,&) which is not a multiple of m. Let us choose such ¢ as small as
possible. Then there exists a homogeneous element p € ¥ such that ¢ and p sat-
isfy Huneke’s condition on /. Since m < ¢, by Lemma 2.6 (2) and (5), we have
a® = cal=*) 4 pal®=™) which implies

IO = =R 4 ppt=m)
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as & and 7 are homogeneous. Hence there exists a homogeneous element p € ¢~
such that

p=np mod £I1VR).

Then p € (§,p')S, and hence we get

aC V(PR

as a € /(& p)R by Proposition 2.1. Now we take any p € Asshg S/I and n > 0.
Then by Proposition 2.1 and Lemma 2.2, we have

=t plr =t gt e M C
so we get
Iy =&1" + p'I, .

Therefore £ and p’ satisfy Huneke’s condition on I, so £ —m € HC(I; k, &), which
contradicts to the minimality of £ as £ —m is not a multiple of m. Consequently, we
see that any ¢ € HC(I; k, ) is a multiple of m.

(2) The assertion holds obviously if m = 1, so let us consider the case where
m > 2. Suppose

nT™ e S[{I™MT™ |1 <n<m-—1}].

Then we have

m—1

n e Z J(@) p(m—a)

a=1
We set S = S/(x,y) = K|[z]. Since any homogeneous ideal of S is a power of 23,

-1
(@ [m=a)g _ 1(B) [(m=P)'G

1

3

«

holds for some 8 =1,2,...,m —1. Moreover, we can choose homogeneous elements
p € I® and p € 1P such that n and pp’ have the same class in S, which is
equivalent to

n = pp’ mod (z,y).

Then by Proposition 2.1, we have

ls(S/(x,€,p))
gS(S/(‘TaSvp/))

kB -ls(S/(x)+1) and
k(m —B) - Ls(S/(x)+1).
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Since (z,y,7n), (x,y,p) and (z,vy, p’') are all homogeneous m-primary ideals, we have

ls(S/(x.&m)) = Ls(S/(x,y",m))

= 1-Ls(S/(z,y,m))

= i ls(S/(z,y.p0))

= i {ls(S/(z,y,0)) + ls(S/(z,y,0))}
Us(S/(x, 9, p)) +Es( S/ (2,4, 0))
Us(S/(%,&p)) +s(S/(2,€, /)
kG- ls(S/(x) + 1)+ k(m —B) - Ls(S/(x) + 1)
{kB +k(m —B)} - ls(S/(x) + 1)
km - ls(S/(x)+1)

= Cs(S/(x,€m)).

Consequently, it follows that

ls(S/(x,€,p)) = kB-Ls(S/(x)+1) and
ls(S/(x,€,07)) = k(m—B)-Ls(S/(x) +1).

Hence we get 5,m — 8 € HC(I;k,&), which contradicts to the minimality of m.
Thus we see

v I

nrm & S[{[(”)T" |1<n<m-—1}].
(3) Let 0 < k', 0 € Z, & € I*) and o € I¥). Suppose that ¢ and 7' satisfy
Huneke’s condition on /. Then by Lemma 2.6 (1), we have
Gs(a)+ C \/(ﬁ’T’“’,n’TZ/)gs(a)
On the other hand, from the existence of £ and 7, we see gradeG,(a);, = 2 by

Lemma 2.6 (5). Hence it follows that &'T*,7/T" is a regular sequence on G,(a). If
K +¢ —1<n, wehave ai™ C (¢,7)R by Lemma 2.6 (2), so

a® =a™ (¢ )R = a4 a0,

Thus we see
Ry(a) = S[ETY qT" {a™T" |1 <n <K+ -2}
= SHa™T" |1 < n <max{k 0 K+ —2}}],

which means that the first assertion of (3) holds. We get the last assertion taking k
and m as k" and ¢, respectively. O

In the rest of this section, let Sz = Z[x,y, z]. Moreover, for a field K, we denote
K[z,y,z] by Sk instead of S in order to emphasize that the coefficient field is K.
Putting suitable weights on x,y and 2, we regard Sz and Sk as Z-graded rings. We
set my = (x,y,2)Sz, mg = (2,y,2)Sk and Rg = (Sk)m,. When we denote an
ideal of Sz by Jz, the ideal J; Sk is denoted by Jg. Similarly, when we denote an
element of Sz by &z, its image in Sk is denoted by £x. For a prime number p, we

set F,, = Z/pZ. Of course, Sg = (Z \ {0})~'Sz and Sy, = Sz/pSz.
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Lemma 2.10. Let Jy be an ideal of Sz. Then, we have
Ury(Ro/(Jo)mg ) = Cre, (B, /(Jr, )me, )

for any prime number p > 0. If Jz is homogeneous, we may replace Ry, (Jg)my, Br,
and (Jg, )me, with Sg, Jo, S¥, and Jg,, respectively.

Proof. First, let us consider the case where Rg/(Jg)m, is Artinian. We prove the
required equality by induction on (g, ( Ro/(Jg)mg )-

If (ry(Ro/(Jg)mg) = 0, then Jg contains an element which does not belong to
mg, so there exists &, € Jz \ mz. Let us take a prime number p > 0 so that the
constant term of &z, which is non-zero, is not a multiple of p. Then &, € Jg, \ mp, .
Hence (Jr, )ms, = Br,, 80 lry (Rr,/(J5,)mg, ) = 0.

Now we suppose (g ( Rg/(Jg)my ) > 0. Then, as my € Assg, Sz/Jz, there exists
nz € Sz such that Jz : nz = mz. We set Ly = Jz + (nz). Let us notice Lg/Jp =
Sg/mg. Hence we have lg,( (Lg/Jg)my ) = 1, s0

gR@( RQ/(LQ)mQ ) = ER@( RQ/(JQ)mQ )— 1

Here, we take a prime number p > 0. Then the hypothesis of induction implies
Ury(Ro/(Lo)mg ) = Lre, ( Ry, /(Lr, )ms, )-

Moreover, by taking larger p if necessary, we may assume that p is regular on Sz /Lz.
If np, € Jr,, we have 1z € Jz + pSz, so there exists pz € Sz such that nz =p - pz
mod Jz. Since p is regular on Sz/Lyz, we have p; € Lz, so there exists oz € Sy
such that py; = nzoz mod Jz. Then we have ny = p - nzoz mod Jz, and hence
1 —p-o0z € Jz : nz = mg, which is impossible. Thus we see nr, ¢ Jr,. Hence
we have mp, = Jp, : 1, since ng, - mp, C Jp, holds obviously. Then we get
Ly, /Jr, = Ry, /mg,, s0 ERFP(L]FP/JFP) = 1. Consequently,

Ury, (Rr,/(Ly,)ms, ) = Cr, (Rr,/(JF, )mg, ) — L.

Therefore the required equality follows.

Next, we assume dim Rg/(Jg)m, > 0, and aim to prove dim R, /(Jr, )ms, > 0
for p > 0. In this case, there exists P, € SpecSy such that J; C P, C my.
Let us take any 7, € my \ Pz and choose a prime number p > 0 so that p is
regular on Sz/(7z) + Pz. Then, as p, 77 is a regular sequence on (Sz/Pz) (ps,+my), it
follows that 77 is regular on (Sz/pSz + Pz)(ps;+ms) = Br,/(Fr, )ms, - Hence we have
dim RJFp/(Ple)mwp > 0, and so dim RFp/(JFp)mmp >0 as Jp, C Fr,. O

In the rest of this section, let Iz be a homogeneous ideal of Sz contained in my.
We assume that the following conditions are satisfied for any field K;

o (x) + Ik is mg-primary,

o Assg,. Si/Ix = Asshg, Sk/Ik, and

o (Ik), is generated by 2 elements for any p € Asshg, Sk/Ix.
Furthermore, for any n € Z, we set (I1)z = {J,~o((Iz)" :s, %), which is a homoge-
neous ideal of Sz. Let us denote (1();Sk by (I)f for any field K.
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Lemma 2.11. The following assertions hold for any n € Z.

(1) (Ig)™ = (I")q.
(2) (]Fp)(") = (I(”))]Fp for any prime number p > 0.

Proof. First, let us notice that, for any field K, we have (Ix)™ = ..o (Ix)" :5, @),
and hence (Ix)™ D (I™)g holds. The converse inclusion holds obviously if K = Q.
So we have to prove (Ig,)™ C (I™)g, for p > 0.

Let us take a prime number p > 0 so that p is regular on Sy/(x) + (I™).
Moreover, we take any & € Sz satisfying &p, € (Ir ) ™). Then there exists 0 < i € Z
such that z'¢p, € (Ir,)", which means 2°¢; € pSz + (Iz)" C pSz + (I™)z. Hence
there exists ny € SZ such that r'¢y = pngz mod (I™);. Since z,p is a regular
sequence on Sz/(I1()y, so is 2%, p. Hence 1y, € (%) + (I™)z, so there exists pz € Sy,
such that 7z = 2'pz mod (I™)z. Then we have x'¢; = pr’pz mod (I™)z, which
means &z — ppz € (I7)z. Thus we get &r, € (](”))Fp. O

Proposition 2.12. Let 0 < k0 € Z,&5 € (I™)g and nz € (1Y), Suppose that
o € (Ig)™ and ng € (Ig)¥ satisfy Huneke’s condition on Iy. Then for any prime
number p > 0, &, € (IFP)( ), N, € (IFP)(E), and these elements satisfy Huneke’s
condition on Iy,.

Proof. Let p > 0. Then by Lemma 2.11, we have &, € (Ip,)* and ns, € (Ir,)®.
Moreover, by Lemma 2.10, we have

Cre, ( Ry, /(. &r,0mr,) ) = Cry(Ro/(,80:M0))
— kL Lsy( S/ (@) + I)
= K005, (S5, /(@) + Ir, ).
Thus we get the required assertion. 0

Theorem 2.13. Let k = 1 or 2. Let &, € (IW)g and &, = ' mod xSy for some
0 < i € Z. Suppose that there exists a positive integer r such that, for any prime
number p > 0, we have rp» € HC(Ig,; k,&p,) for some 0 < e, € Z. Then the
following conditions are equivalent:

(1) Rs(lg) is finitely generated.
(2) HC(Ig; k, &) # 0.
(3) m € HC(Ig; k, &o)-
(4) r € HC(Ig,; k,&r,) for any prime number p > 0.

Proof. Let &, be the homogeneous part of & containing y' as a term. Then, as
&, € (I®)z, we have & € (Ig)™® and &, € (Ir ) for p > 0 by Lemma 2.11. More-
over, by Remark 2.8, we have HC(Ig; k ,§0) = HC(Ig; k, &) and HC(I,; k,&r,) =
HC(Ir,; k, &) for p > 0. Hence by replacing &z with &7, we may assume that &z is
homogeneous from the beginning. It is easy to see (3) = (2) = (1).

Now, we start to prove (1) = (4). By Theorem 2.5 and Lemma 2.11 (1), there
exist 0 < K, 0" € Z,(z € (I%)) and py € (I*)) such that (g € (Ig)*) and
po € (Ip)") satisfy Huneke’s condition on Iy. Here we take a prime number p > 0
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such that Gr, € (Ir,)*), pr, € (Ir,)*), and these elements satisfy Huneke’s condition
on Ig,, which is possible by Proposition 2.12. By taking larger p if necessary, we
may assume p > max{k’, ', k' + ¢’ — 2} and our assumption on HC(Iy,;k,&r,) is
satisfied. Then, as HC(I,; k,&r,) # ¢, we have

Se, [{(Is,) ™ T™ | 1 < < p—1}] = Ry(Ir,)

by Proposition 2.9 (3). We set m = min HC(Ir,; k,&r,) and take 0 < e, € Z such
that rp® € HC(Ip,; k,&,). Then by Proposition 2.9 (1), there exists m’ € Z such
that rp®» = mm/. Since Proposition 2.9 (2) implies m < p, m is not a multiple of p,
som’ is a multiple of p®». Hence r is a multiple of m, which means » € HC(Ig,; k, &g, ).

Next, we shall prove (4) = (3). Let us take a prime number p > 0 such that
re HC([IFP; k, S]Fp), gs@( SQ/(I‘) + [Q) = gst ( S[FP/((E) + IIFP ) and (I]Fp)(T) = (I(T))FP,
which is possible by Lemma 2.10 and Lemma 2.11. Then by Lemma 2.4 (2) and
Lemma 2.11, there exists a homogeneous element 7 € (I1(")z such that &, € (I, )®
and s, € (Iy,)") satisfy Huneke’s condition on Ir,. We write

nz =z’ mod (z,y)Sz,

where j is a positive integer and « is an integer which is not a multiple of p. Let
K = Q or F,. Then, as the image of a in K is not zero, we have (x,y,nx)Sk =
(z,y,27)Sk. Hence we get

Usi (S /(2. €k, mK)) = Usi(Sk/ (29", 1K)
Z.'ESK(SK/(xvyvnK))
i+ ls (Sk/(2,y,27))
i].

Consequently, we have
lsy(Sa/(7,80:m)) = s, (Sr,/(7,&r,07F,) )
kr - g&,p(Sﬂrp/(iL‘) + I]Fp )
kr - lsy(Sq/(x) + Ig),
which means r € HC(Ig; k, £g). O

3. PROOF OF THEOREM 1.1

We shall prove Theorem 1.1 in this section.

Let K be a field and a, b, ¢ be pairwise coprime positive integers. We regard the
polynomial ring S = Klz,y, z] as a Z-graded ring by deg(x) = a, deg(y) = b and
deg(z) = c.

We denote by Pg(a, b, ¢) the weighted projective space Proj S. Let

7 Xk(a,b,c) — Pg(a,b,c)

be the blow-up at the point corresponding to px(a, b, c). We remark that Pk (a, b, c)
is non-singular at the point V, (px(a,b,c)) (e.g., Lemma 9 in [2]). If no confusion is
possible, we denote px(a, b, ¢) (resp. Xk (a, b, c), Px(a,b,c)) simply by p (resp. X, P).
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Let E be the exceptional divisor of w. Let A be a Weil divisor on X which satisfies
Ox(A) = 7*Op(1). Since a, b, ¢ are pairwise coprime, we have Ox(nA) = 7*Op(n)
for any n € Z (e.g. Lemma 1.6 in [11] !). Then

Cl(X) = ZA+ ZE ~ 7?

and the intersection pairing is given by

AEDL,W:—LAE:EA:Q
abc
Definition 3.1. A curve C on Xk (a,b,c) is called a negative curve on Xk (a,b, c)
if C? <0and C # E.
An irreducible homogeneous polynomial ¢ in [pg(a,b,c)]y is called a negative
curve in pg(a,b,c)") if d/r < v/abe. Note that in this case the proper transform of
V. (€) is a negative curve C' which is linearly equivalent to dA — rE.

Since X is QQ-factorial and the Picard rank of X is two, the Kleiman-Mori cone
NE(X) is a cone in R% If a negative curve C exists, then Rso[C] and Rso[E]
are boundary rays of NE(X). Assume that there exists another negative curve C'.
Then C" is linearly equivalent to aC' + BE for some «, 5 > 0. Then we have

0> C”=C"(aC + BE) = a(C".C) + B(C".E) > 0.

It is a contradiction. Therefore, if a negative curve C' on Xg(a, b, c) exists, then it
is unique. If a negative curve € in [px(a, b, c)™], exists, then r and d are uniquely
determined, and £ is also unique up to multiplication by an element in K*. A
negative curve C' on Xg(a,b, c) is the proper transform of V. (&).

Lemma 3.2. Let K be a field and a, b, ¢ be pairwise coprime positive integers. We
assume that pg(a, b, c) is minimally generated by the three elements in (1.2).

Then the curve Vi (2" — x%y") in Pk(a,b,c) is isomorphic to P}.. The proper
transform C' (in X ) of this curve is also isomorphic to Pi..

Proof. First of all, we remark that 2% — 2°y' is an irreducible polynomial by defi-
nition of u (see (1.1)). We put v = 2°22¥2 /y" and w = zy" /2"

The ring S[z~t,y~ !, 271] still has a structure of a Z-graded ring. By definition,
Slz=t,y7t, 27y contains K[v*, w*]. Let us prove the opposite inclusion. Let M
and N be monomials in z, y, z with the same degree. We shall prove M/N €
K w*!]. Since M — N € px(a, b, c), there exists a sequence of monomials (in z,

Y, 2)

M =M, My, ..., M, =N
such that, for each i = 1,2,...,n — 1, M;/M,, is equal to one of
xs ytl Zul yt xSQ Zuz Zu x83yt3
ytl Zu1 ’ xs ) 152 ZU2 ’ yt ’ xs;gytg ’ U :

ISince a, b, ¢ are pairwise coprime, the closed set UjcpSp in [11] is a subset of
{Vi(z,y),Vi(y,2),Vi(z,2)}. Since the codimension of Uj;Sk is 2, there exists a Weil divi-
sor (with integer coefficients) F' of P such that Op(n) = Op(nF) for any n € Z by Lemma 1.6 in
[11]. Since X is a blow-up at a smooth point of P, Ox (n7~1(F)) = 7*Op(n) for any n € Z.
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They coincide with

VW, v_lw_l, v_l, v, w_l, w

respectively. Therefore, we have

Thus we know

Then we have

(3.1) Sly =K {vo‘wﬁ

S u
a76€Z7 05207 _EQSBS_QOZ
S3 u

Taking the degree 0 component of
Sly~'] Sz~ y™ 27
(24 —assy)Sly~] — (w—1)Sa=ty 27

we obtain
S[y—l]o C K[Uil, wil]
(= DRI, 5[ n 5T © (o= DR, wh]
Let ¢ : K[vr, w*l] — K[v*!] be the map given by ¢(w) = 1. The kernel of the
map ¢ is (w — 1)K [v*, w*!]. By (3.1), we have ¢(S[y~']o) = K[v]. Hence, we have

[(zu -~ f[zt? S[y_l]]o ~ K],

In the same way, we know that

Sz
{(Z“ - IS?’ytS)S[ﬂC‘l]L
is also isomorphic to a polynomial ring over K with one variable. Hence, the curve
V(2" — x%y") in Pg(a, b, c) is isomorphic to Pf.
Since the map C' — V, (2% —x3y'3) is a finite birational map, C'is also isomorphic
to Pk U
We use Cutkosky’s method [2] to prove the following two lemmas.

Lemma 3.3. Let K be a field of prime characteristic p. Let a, b, ¢ be pairwise
coprime positive integers. We assume the conditions (ii) and (iii) in Theorem 1.1.
Let C be the proper transform of Vi (z* — x*3y™), that is, C' is a negative curve.

Then there exists a positive integer r satisfying the following property: For any
positive integer n and any L in the kernel of the natural map Pic(nC') — Pic(C),
L s isomorphic to Opc.

Proof. We have the natural exact sequence

0 — Ox(—nC)/Ox(=(n+1)C) — Opirye — Ope — 0.
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It induces the exact sequences 2
0 — Ox(—nC)/Ox(—=(n+1)C) — O(><n+1)C — O, —1

and

HY(X,0x(—nC)/Ox(—=(n+1)C)) — HI(X>O(Xn+1)C) — HYX,0;0) —0

I f
Pic((n+1)C) —  Pic(nC)

Therefore we know that the order of an element in the kernel of the map Pic((n +
1)C) — Pic(nC) is 1 or p. Therefore, for any element £ in the kernel of the map
Pic((n+ 1)C) — Pic(C), LZF" is isomorphic to O,11)c-

Since C' is linearly equivalent to cuA — E, abC' is linearly equivalent to abcuA —
abE. Therefore abC' is a Cartier divisor by Lemma 1.3 in [11]. Since Ox(—abC) is
invertible, we have

Ox(—nC) _ Ox(—nC)  Ox(—(n+ab)0)
Ox(—(n+ 1)0)®OC(_abC)  Ox(—(n+1)0) - Ox(=(n+ab+1)0)’

Since C? < 0, Og(—abC) is an ample Cartier divisor on C since C' ~ PL by
Lemma 3.2. Thus there exists a positive integer r such that

HY(X,0x(—nC)/Ox(—(n+1)C)) =0

®Ox(—abC)

for any n > r.

Thus, for n > r, we know that the natural map Pic((n + 1)C) — Pic(nC) is an
isomorphism.

It is easy to see that r satisfies our requirement. O

Lemma 3.4. Let K be a field of prime characteristic p. Let a, b, ¢ be pairwise
coprime positive integers. We assume the conditions (ii) and (iii) in Theorem 1.1.

Then there exist e > 0 and n € [pP™],eq such that 2* — x*3y' and n satisfy
Huneke’s condition on p, that is,

ls(S/(x,2" —a®y" n)) = pu-Ls(S/(z) +p)
holds. (The above integer e depends on a, b, ¢ and p.)

Proof. Let C' be a negative curve on X. A negative curve exists by the condition
(ili) of Theorem 1.1. We have C' ~ cuA — E.

Consider the reflexive sheaf Op(ab). Since S,;, contains both z° and y*, Op(ab)
is invertible away from the point Vi (x,y). Therefore Ox(abA) is invertible away
from the point 7=(V, (x,y)). Since C' does not contain the point 7=(V, (x,y)),
Ox(abA —uFE) ® O,¢ is an invertible sheaf on nC for any n > 0.

Consider the invertible sheaf Ox(abA — uE) ® O¢. Since (abcA — cuE).C = 0,
the degree of Ox(abcA — cuE) ® O¢ is 0. Here remark that Ox(abcA — cuFE) is

2Suppose that I is an ideal of a ring A with I? = (0). Consider the map I — A* defined by
a — 1+ a. It induces the exact sequence 0 — I — A* — (A/I)* — 1.
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an invertible sheaf. Since C' is isomorphic to Pk, Ox(abcA — cuE) ® O¢ ~ Oc.
Therefore,

(3.2) Ox(abA — uE) ® O¢ ~ Oc

since Pic(Py) ~ Z.
Since (abA — uFE).C' = 0, we have

ab — ¢)(ab — cu?)
abc

(abA —uE — C)? = (abA — uE)* + C* = ( >0

by the condition (iii) in Theorem 1.1. By the condition (ii) in Theorem 1.1, we have
u > 2. Therefore, we have

(abA—uFE —-C)E=u—1>0

(abA —uE — C).C = —C?* > 0.
Since NE(X) is spanned by [C] and [E], (abA — uE — C).F > 0 for any curve
F on X. Here remark that abcA and E are Cartier divisors. Then we know that
abc(abA—uE—C) is an ample Cartier divisor on X by the Nakai-Moishezon criterion.

Therefore we have H'(X, Ox (((abA — uE — C))) =0 for £ >> 0.
We choose e > 0 such that

(3.3) HY(X,Ox(p¢(abA —uE — C))) =0

and e > r, where r is a positive integer that satisfies the requirement in Lemma 3.3.
Since

0— Ox(—peC) — OX — Opec — 0
is exact and e > r, we have an exact sequence

0 — Ox(pf(abA —uE — C)) = Ox(p®(abA — uE)) = Ox(p®(abA — uE)) ® Opec — 0

I
Opec

by Lemma 3.3. Then, by (3.3), we have a surjection

HY(X,Ox(p¢(abA —uE))) — H*X,Ox(p*(abA — uFE)) ® Opec) — 0.

I
HO(X> OpeC)

Therefore, the natural map
Ox (p°(abA — uE)) — Ox(p°(abA — uE)) ® O¢ ~ O¢
induces the surjection
H(X, Ox(pf(abA — uE))) — H°(C,0¢) = K.

Thus there exists an effective Weil divisor D such that D ~ p°(abA — uE) and the
support of D does not intersect C. Let n be the equation of (D). The degree of n
is p®ab. Since DNC =0, Vo (2* — 2%y"*) NV, (n) C Vi (p) as a set. Therefore, p is
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the only one minimal prime ideal of (z* — x®y® ). Hence x, 2* — x5y n form a
regular sequence of S. We obtain

ls(S)(x, 2" — %y n)) = Ls(S/(x, 2%,y ")) = pPau = p°u - Ls(S/(z) +p),
which is the required equality. The last equality above follows from
ls(S/(x) +p) = e)(S/p) = eqa)(K[t*,1°,1°]) = eay (K [t]) = xp(K[t]/1°K[t]) = a.
O

Proof of Theorem 1.1. By Lemma 3.4, for any prime number p, there exists a
positive integer e such that

up® € HC(p, (a,b,¢); 1, 2" — z™y"?).
Then, by Theorem 2.13, we know that Rs(pg(a,b, c)) is Noetherian if and only if
u € HC(pg(a, b, c); 1, 2" — a%y").
We have completed the proof of Theorem 1.1. O

Remark 3.5. Let a, b, ¢ be pairwise coprime positive integers.

Let € € [pr(a,b, ¢)®]4 be anegative curve with d/k < vabe. Then R, (px (a,b, c))
is Noetherian if and only if HC(px (a, b, ¢); k, &) # 0.

Let ¢ be a homogeneous element in Sz. Then &y € [pg(a, b, )], is a negative
curve with d/k < v/abe if and only if, for p > 0, &, € [pr, (a,b,c)P], is a negative
curve with d/k < vabe.

Let ¢ be a homogeneous element in Sz. Assume that & € [po(a,b,c)®],
is a negative curve with d/k < vabe, and Ry(pg(a,b,c)) is Noetherian. Then
HC(pg(a, b, c); k, &) = HC(prg, (a,b, ¢); k, &) for p > 0.

Let € € [px(a,b,c)®], be a negative curve with d/k < vabe. Assume that k = 1
or 2. Suppose that

£ =1v" mod zS

for some i. Furthermore, assume that R,(px(a,b,c)) is Noetherian. Then there
exists a positive integer m such that
HC(px(a,b,c); k, &) = {tm | £ € N}

by Proposition 2.9 (1).

4. THE CONDITION EU

In this section, we introduce a sufficient condition (which is called as “the condi-
tion EU” below) for finite generation of R4(p) under the assumption in Theorem 1.1.
The condition EU was defined in Ebina [4] and Uchisawa [12]. We shall prove that,
if u < 6, the condition EU is a necessary and sufficient condition for finite generation
of R(p) in Proposition 4.10.
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Let us remember the method introduced in Gonzalez-Karu [5]. Let a, b, ¢ be
pairwise coprime positive integers and K be a field. Let S = Klz,y, z] be a Z-
graded ring with deg(z) = a, deg(y) = b and deg(z) = ¢. Suppose that the prime
ideal pg(a, b, c) is minimally generated by the three elements in (1.2).

We put

v=a%2" [yt w =yt
Since pg(a, b, c) is generated by the three elements in (1.2), we have
Szt yt, 2 Yo = Kot wt]
as in Lemma 3.2. Therefore, for each non-negative integer e, we have
(4.1) Sty 2 News = 4% - Szt yt, 2o = 4o - Kot wt]
Let A, be the domain (with boundary) surrounded by the following three lines

y = —(s2/s3)w
y = (ug/u)z
y = (t/t3)(x —u)+ us.

Let (0,0), (u,us), (01, 02) be the vertices of A,. Here, ; and d, may not be integers.

A

S

(u, us)

For a non-negative integer e, we put

e, = {(6a7eﬁ) | (Oé,ﬁ) € Au}

Then it is easy to see that the equality (4.1) induces

Sear = Y& - @ Kv®w’

(a,8)€€A,NZ2
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Since
¥ — Y2 =y 2" (vw — 1)
yh— a2 =y (1 - v)
24— Byt = 2"(1 — w),

we have

pSle Ly Lz = (v—Lw—-1)S""y 27l

Since each associated prime ideal of p” is a homogeneous prime ideal containing p,
(x,y, 2)S is the unique embedded associated prime ideal of p™. Thus we have

pMWSz7y 2 =p Sz y 2 = (v —1Lw—1)"S[z Lyt 27
and
p™ = (v —1,w—1)"Sz"y NS
for any n > 0. Therefore,
P = (v—1w—1)"S[z75y L 27N Sews

(4.2) _ e P K’ |- 1w 1)Kt vt
(a,B)€€ALNZ2

Remark 4.1. Let K be a field of characteristic 0. Let ¢(v,w) be an element in

K[t w*!]. Then p(v,w) € (v —1,w — 1)"K[v*, w*!] if and only if
ak+é¢
——(1,1) =0
c%kawﬁ( 1)

for k + ¢ < n.

Remark 4.2. Assume the conditions (i), (ii) and (iii) in Theorem 1.1. Then, by
Theorem 1.1, Ry(p) is Noetherian if and only if [p(*],, contains an element whose
coefficient of y* is not 0. By (4.2), it is equivalent to the statement that

@ Kv*w” ﬂ(v — 1w —1)"K[v*, w*]

(a,8)EALNZ2

contains an element whose constant term is not 0. It is not so difficult to check
whether it is satisfied or not using computers.

Now, we introduce the condition EU which is defined by Ebina [4] and Uchi-
sawa [12].

Definition 4.3 (Ebina [4], Uchisawa [12]). Let a, b, ¢ be pairwise coprime positive
integers. Suppose that the prime ideal p is minimally generated by the three elements
in (1.2). Fori=1,2,...,u, we put

=" {(a, ) € A,NZ? | a =i}
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Note that ¢; > 1 for all ¢ = 1,2,...,u. We sort the sequence ¢, {5, ..., ¢, into
ascending order

(<< <L
We say that the condition EU is satisfied for (a, b, c) if
0>
fori=1,2,... u.
Example 4.4. (I) Assume (a,b,c) = (8,19,9). Then

p=(a" =%y’ — 2%, 2" — ay)

and the conditions (ii) and (iii) in Theorem 1.1 are satisfied.

Then u = 3 and

b =6, lo=3, (3=1.
Therefore

¢—1, t,=3, =6

The condition EU is satisfied in this case.
(IT) Assume (a, b, c) = (25,29,72). Then

w7, 11 7.2 3 _ 4 4
p=(v —y'zy —x'2% 2 2%y
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and the conditions (ii) and (iii) in Theorem 1.1 are satisfied.

|
SN

I

|
IR

Then v = 3 and

£1:2, 62:2, 63:1

Therefore

=1, =2 (=2

The condition EU is not satisfied in this case.

(ITI) Assume (a,b,c) = (17,503,169). Then

89 2.3 3 49 4 7 40
p=(2 -y Yy —a7e 2 = aTy)
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and the conditions (ii) and (iii) in Theorem 1.1 are satisfied.

_s2 4 49 N\ tr_3
s3 | 40 \\. ° L4 ’ tz
\ /
\\ ///
. ® o /
\ /
\\ /
N
AN /
\ /
N/
Then v = 7 and

(=2, ly=4, l3=05, l4=T, l;=5, lg=3, (=1
Therefore
=1, l5=2 (=3, ly=4, (=5 ly=5, (.=T.
The condition EU is not satisfied in this case.
In order to show that the condition EU is a sufficient condition for finite generation

of Rs(p) under some assumptions, we need the following lemma ([4], [12]). For the
convenience of the reader, we give a proof of it here.

Lemma 4.5 (Ebina [4], Uchisawa [12]). Let K be a field of characteristic 0 and v,
w be variables.

Let u be a positive integer and oy, o, ..., o, be mutually distinct integers. For
1=1,2,...,u, consider some integers Bi1, Bio, - .., Biu satisfying

Bin < Big < -+ < B
Put

u

T = U{(ai,/@il)a (@i, Bia), -+ (i, Bia) } C 22

=1
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Then we have

EB Kv°w” ﬂ(v —Lw—1)"K[v*, w*] = 0.

(a,8)€T

Proof. We shall prove it by induction on w.
If w =1, then #T = 1. It is easily verified in this case.
Assume u > 2. Take

o(v,w) € @ Kv*w” ﬂ(v — 1w —1)“K[v* w*].
(a,B)eT

Qy

Considering v~ * (v, w), we may assume «, = 0. Then g—f satisfies all the assump-
tions with u — 1. Here, recall g—f € (v—1,w—1)"tK[v* w*!] by Remark 4.1. By

induction, we obtain %‘5 = 0. Therefore, we may suppose

o(v,w) = Z Cjwﬁ“‘j
=1

where (4, ...,C, € K. Since p(v,w) € (v—1,w — 1)*K v, wt'], we have

o

0= —
owk

(L) =) CiBui(Bug = 1) (Buy —k +1)

for k=0,1,...,u — 1. Then we have
k
> CiBy =0
j=1

for k=0,1,...,u—1. Itiseasytosee C; =Cy =---=(C, = 0. 0

By this lemma, we can prove that the condition EU is a sufficient condition for
finite generation of R4(p) under some assumptions.

Proposition 4.6 (Ebina [4], Uchisawa [12]). Let a, b, ¢ be pairwise coprime positive
integers. Assume the conditions (i), (i), (i) in Theorem 1.1.
If the condition EU is satisfied, then Rs(px(a,b,c)) is Noetherian.

Proof. By the condition EU, we can choose a set T" as in Lemma 4.5 which satisfies
T c (A, —{(0,00})NZ*
By (4.2), we obtain

[P0 =y P Kvw’ |- 1w 1) K™, w
(a,B)EALNZ2
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By this equality, we know that [p®™)],, is defined by “uH linear equations in

Y (B(apeannzz Kvrw?). We put T = T U {(0,0)}. Recall that 7" € A, NZ?
and #T" = % + 1. Then [p™],, contains a non-zero element in the form

n<x7yvz):ya Z Caﬁ)v w P

(e, B)ET

where C, 5) € K.
If Co,0) = 0, we have

n(z,y,z) € y* @ Kv*w” ﬂ(v —1Lw—1)"K[v= v | =0
(e, B)ET

by Lemma 4.5. It is a contradiction. Therefore, Cg gy # 0. Then
ls(S/(x,2" —a®y" n)) =ua=u-ls(S/(z) +p)
holds. Hence, R4(p) is Noetherian by Huneke’s condition. See also Remark 4.2. [

The aim in the rest of this section is to prove the converse of Proposition 4.6 in
the case u < 6.

Definition 4.7. Let a, b, ¢ be pairwise coprime positive integers. Assume the
condition (ii) in Theorem 1.1.

We define
n =" {[—(s2/s3), (uz/u)] NZ}, m =" {[(uz/w),(t/ts)] N L},
where [, ] is the closed interval.

We say that the condition GK is satisfied if one of the following two conditions is
satisfied:

() #{(n = D[(uz/u), (t/ts)] N Z} = n and (uz/u)n ¢ Z,
(1) # {(m — 1)[—(s2/s3), (ug/u)] N Z} = m and (uy/u)m ¢ Z.

We remark that the above condition (I) is satisfied for a, b, ¢ if and only if the
above condition (II) is satisfied for b, a, c.

Let a, b, ¢ be pairwise coprime positive integers. Assume the conditions (i), (ii),
(iii) in Theorem 1.1. If the condition GK is satisfied, then Rs(px(a,b,c)) is not
Noetherian by Theorem 1.2 in Gonzalez-Karu [5].

Proposition 4.8. Let a, b, ¢ be pairwise coprime positive integers. Assume the
conditions (i), (it), (iii) in Theorem 1.1.

Then the condition GK is satisfied if and only if one of the following five conditions
18 satisfied:

(GK1) n = 1

(GK2) m

(GK3) n =2 <u,

(GK4) 3 < n<u,m=2and " {(n—1)[(uz/u), (t/t3)] N Z} = n,
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(GK5) n=2,3<m <u and #* {(m — 1)[—(s2/s3), (ua/u)| N Z} = m.

Proof. Let (01,02) be one of the vertices of A, as in the beginning of this section.
First, we remark that, if 0 <7 < i+ 1 < §y, then £;41 > ¢; + (n — 1). In the same
way, if 6 < i <i+4+1 < wu, then ¢; > ¢;1 1 + (m — 1). Thus it is easy to see the
following:

(4.3) If n > 3 and m > 3, then the condition EU is satisfied.
(4.4) If n =2 and m > u, then the condition EU is satisfied.
(4.5) If n > w and m = 2, then the condition EU is satisfied.

Next, recall s = sy + s3, t = t; + t3 and u = uy + up by the condition (ii). Then
we have

ls(S/(x) +p) =Ls(S/(x,y', 2", y"2") ) = tu — tauy,
b = ES(S/(y)—f—p)ZES(S/(I'S,y,Zu’l‘S2Zu2)>:SU,—53U17
c = Us(S)(z)+p)=1Ls(S/(a% 9", z,2%y") ) = st — sqt;.

Since a and b are coprime, uy, us and u are pairwise coprime. Therefore, (uy/u)n &€ Z
if and only if n/u € Z, and (ug/u)m ¢ Z if and only if m/u & Z.

It is easy to see that, if the condition (GKzi) is satisfied for some ¢, then the
condition GK is satisfied.

Conversely, assume that the condition GK is satisfied. Then R, (px(a, b, c)) is not
Noetherian by Theorem 1.2 in Gonzélez-Karu [5]. By Theorem 4.6 and (4.3), either
n < 3 or m < 3 is satisfied.

If n =1 (resp. m = 1), then (GK1) (resp. (GK2)) holds.

Suppose n = 2 and m > 2. Since the condition EU is not satisfied, we have m < u
by (4.4). If (I) of the condition GK is satisfied, then n = m = 2 < u, and therefore
(GK3) is satisfied. If (II) of the condition GK is satisfied, then (GK3) or (GK5) is
satisfied.

Suppose n > 3 and m = 2. We know n < u by (4.5). Then (II) is not satisfied. If
(I) is satisfied, then (GK4) is satisfied. O

Lemma 4.9. Leta, b, ¢ be pairwise coprime positive integers. Assume the conditions
(i), (ii), (iii) in Theorem 1.1.
1) Assume n =2 and 3 < m < u. If either uy = 1 or ug = 1, then either the
condition GK or the condition EU is satisfied.
2) If n = 2 and w > m > (u+ 1)/2, then either the condition GK or the
condition FU is satisfied.

Proof. First of all, remark that the condition EU is satisfied for a, b, ¢ if and only if
so for b, a, c. Furthermore, the condition GK is satisfied for a, b, ¢ if and only if so
for b, a, c.
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First, we shall prove 1). Assume n =2, 3 < m < u and uy = 1. If (GK5) is not
satisfied, then

61:2, 6223, ey fm,QZm—l, gm,12m+1, cee
€2m,322m—1, 62m7222m—|—1,...
and
gu: 1, 61171 Zm, EU,Q > 2m, gufg Z?)m,

since uy = 1. Thus the condition EU is satisfied.
Next, assume n = 2, 3 < m < u and u; = 1. Considering b, a, ¢, we may assume
3<n<wu, m=2and uy = 1. Then we have

Ku:]-’ éu—l 227 éu—Q 247 éu—S 267 Eu—4287"'
and
h=n>3 l>m—1>5 (3531—2>7 (,>4n—3>9,....

In this case, the condition EU is always satisfied.
We prove 2) next. Assume that (GK5) is not satisfied. Then we have

61:2, 5223,...,€m,22m—1, Em,lzm—l—l, EmZm—i—Z,
and
guzl, Ku,lzm, fu,222m—12u,
Thus the condition EU is satisfied. O

Proposition 4.10. Let a, b, ¢ be pairwise coprime positive integers. Assume the
conditions (i), (it), (iii) in Theorem 1.1.

If u <6, then the condition EU is a necessary and sufficient condition for finite
generation of Rs(pk(a,b,c)).

If u < 6, then the condition GK is a necessary and sufficient condition for infinite
generation of Rs(px(a,b,c)).

Proof. We shall prove that either the condition GK or the condition EU is satisfied
if u <6.

If n=1or m =1, then (GK1) or (GK2) is satisfied.

If n > 3 and m > 3, then the condition EU is satisfied as in (4.3).

If u=n =m = 2, then the condition EU is satisfied.

If u>n=m =2, then (GK3) is satisfied.

If n =2 and m > u, then the condition EU is satisfied by (4.4).

If n > u and m = 2, then the condition EU is satisfied by (4.5).

Now assume that n = 2 and 3 < m < u. If u >m > (u+ 1)/2, then either the
condition GK or the condition EU is satisfied by Lemma 4.9 2). Assume 3 < m <
(u+1)/2. If uw <5, then such m does not exist. Suppose u = 6 and m = 3. Since
u, uy, Up are pairwise coprime, either u; or uy is 1. Then, by Lemma 4.9 1), either
the condition GK or the condition EU is satisfied.

Assume 3 < n < wu and m = 2. If u < 6, we can prove that either the condition
GK or the condition EU is satisfied in the same way as above. O
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Example 4.11. Let K be a field of characteristic 0.

Remember the three examples in Example 4.4.

Assume (a,b,c) = (8,19,9). In this case, u = 3, and the conditions (i), (ii) and
(iii) in Theorem 1.1 are satisfied. Since the condition EU is satisfied, Rs(px(a, b, c))
is Noetherian.

Assume (a,b,c) = (25,29,72). In this case, u = 3, and the conditions (i), (ii)
and (iii) in Theorem 1.1 are satisfied. Since the condition EU is not satisfied,
Rs(pr(a,b,c)) is not Noetherian. Infinite generation of this ring was proved by
Goto-Nishida-Watanabe [7].

Assume (a,b,c¢) = (17,503,169). In this case, v = 7, and the conditions (i),
(ii) and (iii) in Theorem 1.1 are satisfied. In this case, neither GK nor EU is
satisfied. Applying Theorem 1.1, we know that R,(px(a, b, c)) is not Noetherian by
a calculation using computers (see Remark 4.2).

Let a, b, ¢ be pairwise coprime positive integers. Assume the conditions (i),
(ii), (iii) in Theorem 1.1. We do not know any example of finitely generated
Rs(px(a,b,c)) such that the condition EU is not satisfied.

5. AN EXAMPLE HAVING NEGATIVE CURVE IN THE SECOND SYMBOLIC POWER

Let S = Klz,y,z], where K is a field and z,y,z are indeterminates. We
set m = (x,y,2)S and R = S,. In this section, we first take positive integers
S9, 83,11, t3, U1, ug arbitrarily, and set

Fmat gl g =gyt 2t =t gtayls,
where s = s5 + s3,t =11 + t3, u = uy; + us. Moreover, we set
a = tsuy + tiu, b = S3us + Sou, ¢ = Sot3 + sst.
Let us regard S as a Z-graded ring by setting
degx = a, degy = b, degz = c.

Then we can check directly that f, g, h are all homogeneous. We set I = (f,g,h)S
and a = IR.

Lemma 5.1. We have the following relations;
(1) y**f +2"1g+a2h =0,
(2) z%2f +2%g+y"h =0.

Proof. Since f, g, h are the maximal minors of the matrix
yt:s UL pS2
ZuQ CCSS ytl )
we get the relations stated above. O

Lemma 5.2. The following assertions hold.
(1) (z) + I is m-primary.
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(2) Assg S/I = Asshg S/I.

(3) I, is generated by 2 elements for any p € Asshg S/I.

(4) ls(S/(z) +1™) = (n(n+1)/2) - a for any 0 < n € Z.

(5) We have I C pg(a,b,c), and the equality holds if GCD(a,b,c) = 1.
Proof. (1) This holds as (z) + I contains x,y" and z*.

(2) Since (z) + I is m-primary, we have grade I = 2. Hence by Hilbert-Burch’s
theorem, we see that I is a perfect ideal, which means that S/I is a Cohen-Macaulay
S-module. Thus we get the required assertion.

(3) Let us take any p € AssgS/I. Then, as = ¢ p, we have h € (f,9)S, by
Lemma 5.1 (1), so I, = (f, 9)5

(4) Since (z)+1 = (z,y', y" 2", 2*), we have e g(R/a) = ls(S/(x)+1) = a. Let
us take any 0 < n € Z. Then

s(S/(x) + 1™ ) = Lp(R/xR+ a™ ) = egp(R/a™™)
= ). (ro(Rp/a}) - ewn(R/P).

PeAsshr R/a

For any P € Asshgr R/a, G(ap) is isomorphic to a polynomial ring with 2 variables
over Rp/ap, so

n

lrp(Rp/ap) ZERP w'/ap) = i-lr,(Rp/ap)

_ n(n+ 1) -

5 lre(Bp/ap).

Thus we get

(/@) + 100y = "L S (Rejan) - eon(R/P)

PeAsshg R/a
1 1
— @.QIR(R/Q) _ @.a

(5) We set p = px(a,b,c). Since f,g,h are all homogeneous, we have I C p.
Hence, we have

a="Ls(S/(x)+1)=1Lls(S/(x) +p)=Lr(R/zR+pR) = e;r(R/pR).

Now, we assume GCD(a, b, ¢) = 1. Then, as is well known, we have e,gr(R/pR) = a,
SO we see

ls(S/(x) + 1)) = Ls(S/(x) +p),
which means (z) + I = (z) + p. Then we have

p=pn((@)+D)=(pn@)+I=xp+I,
from which the equality p = I follows. OJ
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Lemma 5.3. Let b be an ideal of B = K|y, z] generated by the monomials
Yooyt P yeriyfee B (1< r € 7),

where «;’s and [B;’s are positive integers such that ag > o1 > --+ > «a,_1 and
b < -+ < Br_1 < B,.. Then, setting o, = 0, we have

r

(p(B/b) = Z (Qvie1 — ;) Bs.

i=1
Proof. We prove by induction on r. If r = 1, we have
lp(B/b) = {lp(B/(y™, Zﬁl)) = apf = (g — 1) B

Let us consider the case where r > 2. We set of = a; — .y fori =0,1,...,r — 1
and

b = (y%, yallzﬁl7 . ,ya;"—zzﬁT—Z, zﬁr—l).
Because b = y-1b' + (2%7) and y®-1, 2% is a B-regular sequence, it follows that
(yor, 2,&)/5 o (yor=1) /(y*r=? b+ (yar—lzﬁ'r>> ~ B/b/.

Furthermore, the hypothesis of induction implies

r—1 r—1
(o(B/W) = (af; —a))Bi= (a1 — )b
=1 =1

Now, looking at the exact sequence
0 — (y*,27)/b — B/b — B/(y*,2°") — 0,
we get

KB(B/b) = Ip

r—

= (i1 — 04) B + a1 Br
1

(y*=1,27)/0) + Ls(B/(y™ =, 27))

—~

—

i

M-

(Oézel - Oéi)ﬁzr

=1

O

Lemma 5.4. Suppose sy > s3, t;1 = t3 = 1 and u; < us. Then, the following
assertions hold.

(1) There exists homogeneous & € I® such that
(i) @2 = 2"~ f2 — gh,
(i) z2“1& =a*27%h? — fg, and
(iii) € = y* mod ().
(2) (I) + ](2) — (I,yg,y222u1,yZu+u1,22u).
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Proof. (1) From the relations (1) and (2) of Lemma 5.1, we get
—yfh = 2z"gh+22h?® and —yfh=2f*+2%fg,
respectively. Hence we have
Zulgh 4 xsth _ Zu2f2 4 x53f97
so we get
2% (27 — fg) = 2"(2" 7 f2 — gh).
Since %, z"! is a regular sequence on S, there exists ¢ € S such that
%3¢ =227 2 _gh and 2“'€ = %27 BRp — fg.
The first equality implies 2%¢ € 1%, so &€ € I®. The second equality implies
2¢ = —fgmod (), s0 2“1€ = yz“ - y? mod () as f = —y2z*! mod (z) and g = 32
mod (z). Hence we get £ = 3® mod (z) since 2“* is regular on S/(z).
(2) Since (z) + I = (z,y?, yz", 2*) and u; < uy, we have
(l’) + I2 (.T y y3Zu1 7 y222u1’yzu+u1 2u)‘
We set J = () + I? C I®. Then, as
(l’)+J (I’ y y222u1 Yz u+u1’z2u)’
we have
ls(S/(x) +J) =3(u+u) =3a="Lls(S/(x) +1?)
by Lemma 5.3 and Lemma 5.2 (4). Hence we get the required assertion. 0

The element £ exhibited in the above lemma will give the required negative curve
in Example 5.7.

Lemma 5.5. Suppose so > 253, t; =t3 =1 and uy < ug < 2uy. Then, the following
assertions hold.

(1) There exists homogeneous ¢ € I® such that
(i) 73 = f2 + 22172hg,
( ) uzfulg‘ ff + x327233h3 nd
(iii) Q— —y422“1 “2 mod ().
( ) (ZE) (I y y4z2u1 U LY Zu’y22u+2u1’y22u+u1’z3u)_
(3) S[IT, l<2 72,16 T3] - Rs(]).
Proof. (1) From the relations (i) and (ii) of Lemma 5.4, we get
fgh =23 _ g% fé and fgh = 2% k3 — 2UAE,
respectively. Hence we have
22T 3 s fe = g2 S pupe
so we get
Z'LLQ—Ul (f3 + Z2u1_u2h§) — x83<f§ + x82—253h3).
Since x%, 2"27" is a regular sequence on .S, there exists ¢ € S such that
ms;;c — f3 + Z2u1—u2h£ and ZUQ—u1< — fg + 33'82_253}13.
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The first equality implies 2%3¢ € I1® C I®) s0 ¢ € I®) as 2 is regular on S/I®).
The second equality implies 2“2*“1(’ f€ mod (), so z“271( = —yz"t - y3 mod (z)
as f = —yz* mod (z) and £ = y® mod (z). Hence we get ¢ = —y*z?17%2 mod ()
since 227" is regular on S/(x).

(2) By Lemma 5.4 (2), we have

(x) + [I( ) (.I' y y42ﬂ1,y = ’y22u+2’M1’y22u+u1 Z3u)
as up < Uy < 2uq. We set J:(C)+II()CI Then, as
($)+J (l’ y y4z2u1 uzvy P 7y2zu+2u1’yZQqu'u17ZSu)7
we have
s(S/(x) 4+ J) = 6(u+uy) =6a=Ls(S/(x) +1?)
by Lemma 5.3 and Lemma 5.2 (4). Hence we get the required assertion.
(3) It is enough to show I IG) C 1) (We have (I?)2 + [1G3) = ™ which

can be verified in the same way.) Sortmg the products of the monomials of y and 2
exhibited in Lemma 5.4 (2) and Lemma 5.5 (2), we have
7 - 2u1—us2 min{u, dui —u2} 5 . 4u1
2) 7(3 Yo, YTz , Y0z y YR,
(z) + IPI® = (z) + ( y4z4u1+u2 y323u’ Y2t g dutur ) ;
so we get
ls(S/(x) + IPI®) ) = min{29u; + 16us, 32u; + 14us}

by Lemma 5.3. On the other hand, by Lemma 5.2 (4), we have
ls(S/(x) +I®) = 15a = 30uy + 15u,.

Since min{29u; + 16us, 32uy + 1dus} — (30u; + 15uy) = min{ug — uy, 2u; —us} > 0,
we see
ls(S/(@) + IPIP) > £s( S/ () + IP)),
which means 1?13 C 1), U
In the rest of this section, let us denote S and I by Sk and [k, respectively, in

order to emphasize that the coefficient field is K. Moreover, the elements £ and (
constructed in Lemmas 5.4 and 5.5 are denoted by &x and (g, respectively.

Theorem 5.6. Let us choose any rational numbers o and B such that

) 7T a—1
l<a<- and 2<pB< - — .
4 p 3 2—«
Moreover, we choose positive integers ss, S3,u1 and us such that
u
2= B and 2=
S3 Uy

Then, setting t| = t3 = 1, we get the following assertions.
(1) s2 > 2s3 and uy < ug < 2uy.
(2) Let 0 < q € Z. We denote by k the largest integer which is not bigger than
q/3. Then we have (%, z2—u2)k C (galsz=25)+1 paluz—u)y,
(3) Let p be any prime number. Then 3p» € HC(Ig,;2,&r,) for any e, > 0.
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(4) 3¢ HC(Ik;2,&k) for any field K.
(5) Rs(lg) is infinitely generated.

Proof. (1) These inequalities hold since sy/s3 > 2 and 1 < ug/uy < 2.
(2) Since (2%, z217%2)* is generated my

{glk=Dss5iCGu—u) 1y — 0 7k},
it is enough to show that
(k—i)ss < q(sa —2s3) = i(2u; —ug) > q(ug — u)

holds for any ¢ = 0,1,...,k. So we suppose (k — i)s3 < q(s2 — 2s3), where i =
0,1,...,k. Then, dividing both sides of this inequality by s3, we get

k—i<q(p-2).
Here we write ¢ = 3k + ¢, where £ = 0,1,2. Then, as
k—i <3k(B—2) + (B —2),
we have
i > k= 3k(8 —2) — (8 — 2) = k(T —38) — (B — 2).
Hence we get
i2—a)—qla—=1) > {k(7=38)—0B—-2)}2—a)— Bk+{)(a—1)
= E{2—-a)(7T-308)—3(a—1)}+m,

where m = —0{(8 — 2)(2 — a) + (o — 1)}. Now, we notice that our assumption
a<b/4and f<7/3—(a—1)/(2— «) implies

32—a) <7(2—a)—3(a—1),
SO we see
(2—a)(7—38)—3(a—1)>0.
Since ¢ > 0, we have k£ > 0 too, so it follows that
i2—a)—qla—1)>0
as m is a bounded number. Then, multiplying both sides of i(2 — ) > g(a — 1) by
Uy, we get
i(2ur — u2) > q(uz — u1).
(3) By Lemma 5.5 (1) (ii), we have a relation
2 G, — N = fe,
in Sp,. We take 0 < e, € Z and put ¢ = p®. Then we have
Zq(uz—m)cﬂgp + (_1)qxq(82—283)h3q _ quﬁf-p~
Here we write ¢ = 3k + ¢, where ¢ = 0,1,2. Then,

FIEL = (P F1EL € (FO)F - 1000,
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The relation (1) (i) of Lemma 5.5 means f3 € (z°3, z2“1_“2)[]§i). Hence by (2) of this
proposition proved above, we have

(f3)k c (l,q(327253)+17 Zq(uz—ul))[é‘ik).
Thus we see
qu]g c (xq(82_283)+1 zq(u2—u1))Iﬂg3Q)
P ) p
so there exist og,, Tw, € ]ﬁq) such that

gl 8y (_1)igalamp3a — gilea—2) gy | palue)

Then we have
Zq(ug_ul){fﬁzp — 75, } = 27272 (=1) TR+ zog, )
Since x4(527283) a(u2—u1) ig 5 regular sequence on Sr,, there exists np, € Sp, such
that
xq(827233)771Fp — Cgp — TR, and sz(UQ*ul)me — (_1)q+1h3q + TOF, .
The first equality implies z9(2=253)pe € []éiQ), so we have 1y, € ]Iéiq) as xd(s27s3)
is regular on S/ Iﬁ‘”. The second equality implies 272~y = (—1)4113 mod

xS, SO zq(“r“l)wp = (—1)7"123% mod rSp, as h = z* mod zSr,. Hence we get
= (—1)z%a(u+u1) mod xSk, since 24(w2=11) i5 regular on Sk, /xSk,. Then we have

gs}y‘p ( SIFP/(z’ S]Fp? an) ) = ﬁsﬂ‘,p ( SFP/($, y3’ ZQQ(qum)) )
= 6q(u+uy)
= 2'3Q‘£SFP(SFP/('T)+[FP)’

and hence 3¢q € HC(I,;2,&r,).
(4) If 3 € HC(Ik; 2,k ), by Proposition 2.9 (3), we have

SklIxT, 12T 1973 = R, (I),

which contradicts to Lemma 5.5 (3).
(5) Let us notice that {g € Z[z,y, z]. Then, setting k = 2 and r = 3 in Theo-
rem 2.13; we see that R4(Ig) is not finitely generated. O

Example 5.7. Let a = 6/5 and 8 = 49/24, which satisfy the assumptions on «
and (3 of Theorem 5.6. We set

So9 =49m, s3 =24m, t; =t3 =1, uy = dbn and uy = 6n,

where m, n are coprime positive integers such that m is odd and n is not a multiple
of 97. Then, we have

a = 16n, b = 683mn and c = 97m.

Since 683 and 97 are prime numbers, we get GCD(a,b,c) = 1. Hence by Lemma 5.2
(5) and Theorem 5.6 (5), we see that Rs(pg(a,b,c)) is infinitely generated.
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Suppose m = n = 1 in the example stated above. Then a,b,c are pairwise
coprime, and £k is a negative curve for any field K, because

deg &x = degy® = 3- 683 = 2049 and 2049/2 = 1024.5 < /16 - 683 - 97.
On the other hand, (j is not a negative curve, because
deg (x = degy*z* =4-683 +4-97 = 3120 and 3120/3 = 1040 > /16 - 683 - 97.
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