On the limit of Frobenius in the Grothendieck group

Kazuhiko Kurano (Meiji University) *†
Kosuke Ohta (Meiji University) ‡

Dedicated to Professor Ngô Viêt Trung for his 60th birthday.

Abstract

Considering the Grothendieck group modulo numerical equivalence, we obtain the finitely generated lattice $G_0(R)$ for a Noetherian local ring R. Let $C_{CM}(R)$ be the cone in $G_0(R)_R$ spanned by cycles of maximal Cohen-Macaulay R-modules. We shall define the fundamental class $\overline{\mu_R}$ of R in $G_0(R)_R$, which is the limit of the Frobenius direct images (divided by their rank) $[e^p R]/pde$ in the case $\text{ch}(R) = p > 0$. The homological conjectures are deeply related to the problems whether $\overline{\mu_R}$ is in the Cohen-Macaulay cone $C_{CM}(R)$ or the strictly nef cone $SN(R)$ defined below. In this paper, we shall prove that $\overline{\mu_R}$ is in $C_{CM}(R)$ in the case where R is FFRT or F-rational.

1 Introduction

We shall define the Cohen-Macaulay cone $C_{CM}(R)$, the strictly nef cone $SN(R)$, and the fundamental class $\overline{\mu_R}$ for a Noetherian local domain R. They satisfy

$$
\bigcup_{\mathbb{Q}} G_0(R) \supset SN(R) \supset C_{CM}(R) - \{0\}
$$

where $G_0(R)$ is the Grothendieck group of finitely generated R-modules, $G_0(R)_R$ is the Grothendieck group modulo numerical equivalence, and $G_0(R)_K = G_0(R) \otimes_{\mathbb{Z}} K$. By [8], $G_0(R)_R$ is a finitely generated free \mathbb{Z}-module. We define $C_{CM}(R)$ to be the cone in $G_0(R)_R$ spanned by cycles corresponding to maximal Cohen-Macaulay R-modules. If R is F-finite with residue class field algebraically closed, the fundamental class $\overline{\mu_R}$ is the limit of the Frobenius direct images (divided by their rank) $[e^p R]/pde$ as in Remark 8 (3). In the case where R contains a regular local ring S such that R is contained in a Galois extension B of S, then $\overline{\mu_R}$ is described in terms of B as in Remark 8 (2).

The fundamental class is deeply related to the homological conjectures as in Fact 10. The fundamental class $\overline{\mu_R}$ is in $C_{CM}(R)$ for any complete local domain R if and only if

*The author is partially supported by JSPS KAKENHI Grant 24540054.
1E-mail: kurano@isc.meiji.ac.jp
2E-mail: k_ohta@meiji.ac.jp
the small Mac conjecture is true. Roberts proved $\overline{\mu_R} \in SN(R)$ for any Noetherian local ring R of characteristic $p > 0$ in order to show the new intersection theorem in the mixed characteristic case [12]. In order to extend these results, we are mainly interested in the problem whether $\overline{\mu_R}$ is in such cones or not.

Problem 1 If R is an excellent Noetherian local domain, is $\overline{\mu_R}$ in $C_{CM}(R)$?

Problem 1 is affirmative if R is a complete intersection. However, even if R is a Gorenstein ring which contains a field, Problem 1 is an open question.

The following theorem is the main result in this paper. We define the terminologies later.

Theorem 2 Assume that R is an F-finite Cohen-Macaulay local domain of characteristic $p > 0$ with residue class field algebraically closed.

(1) If R is FFRT, then there exist a natural number n and a maximal Cohen-Macaulay R-module N such that $n\mu_R = [N]$ in $G_0(R)_{\mathbb{Q}}$. In particular, $\overline{\mu_R}$ is contained in $C_{CM}(R)$.

(2) If R is F-rational, then $\overline{\mu_R}$ is contained in $Int(C_{CM}(R))$.

In the case FFRT, we shall show that the cone generated by $[M_1], \ldots, [M_s]$ (in Definition 17) contains μ_R. In the case of F-rational, the key point in our proof is to use the dual F-signature defined by Sannai [14].

Finally we shall give a corollary (Corollary 22), which was first proved in [1].

2 Cohen-Macaulay cone

In this paper, let R be a d-dimensional Noetherian local domain such that one of the following conditions are satisfied:

(a) R is a homomorphic image of an excellent regular local ring containing \mathbb{Q}.

(b) R is essentially of finite type over a field, \mathbb{Z} or a complete DVR.

If either (a) or (b) is satisfied, there exists a regular alteration of $\text{Spec} R$ by de Jong’s theorem [5].

We always assume that modules are finitely generated.

Let $G_0(R)$ be the Grothendieck group of finitely generated R-modules, that is,

$$G_0(R) = \bigoplus_{\text{M: f. g. R-module}} \mathbb{Z}[M] \text{ subject to } < [M] - [L] - [N] | 0 \to L \to M \to N \to 0 \text{ is exact }>,$$

where $[M]$ denotes the generator corresponding to an R-module M. Let $C(R)$ be the category of bounded complexes of finitely generated R-free modules such that every homology is of finite length. Let $C_d(R)$ be the subcategory of $C(R)$ consisting of complexes of length d with $H_0(\mathcal{F}) \neq 0$. A complex \mathcal{F} in $C_d(R)$ is of the form

$$0 \to F_d \to F_{d-1} \to \cdots \to F_1 \to F_0 \to 0.$$
For example, the Koszul complex of a parameter ideal belongs to $C_d(R)$.

For $F \in C(R)$, we have a well-defined map

$$
\chi_F : G_0(R) \to \mathbb{Z}
$$

by $\chi_F([M]) = \sum_i (-1)^i \ell_R(H_i(F \otimes_R M))$. We have the induced maps $\chi_F : G_0(R)_Q \to \mathbb{Q}$ and $\chi_F : G_0(R)_R \to \mathbb{R}$. We say that $\alpha \in G_0(R)$ ($\alpha \in G_0(R)_Q$ or $\alpha \in G_0(R)_R$) is numerically equivalent to 0 if $\chi_F(\alpha) = 0$ for any $F \in C(R)$. We define the Grothendieck group modulo numerical equivalence as follows:

$$
\overline{G_0(R)} = G_0(R)/\{\alpha \in G_0(R) \mid \chi_F(\alpha) = 0 \text{ for any } F \in C(R)\}.
$$

Then, by Theorem 3.1 and Remark 3.5 in [8], we know that $\overline{G_0(R)}$ is a non-zero finitely generated \mathbb{Z}-free module.

Example 3

1. If $d \leq 2$, then $\overline{G_0(R)} = \mathbb{Z}$ (Proposition 3.7 in [8]). If $d \geq 3$, there exists an example of d-dimensional Noetherian local domain R such that $\dim \overline{G_0(R)} = m$ for any positive integer m as in (2) (b) (i) below.

2. Let X be a smooth projective variety with embedding $X \hookrightarrow \mathbb{P}^n$. Let R (resp. D) be the affine cone (resp. the very ample divisor) of this embedding. Let $A_*(R)$ be the Chow group of R. By [8], we can define numerical equivalence also on $A_*(R)$, that is compatible with the Riemann-Roch theory as below. Let $CH(X)$ (resp. $CH_{num}(X)$) be the Chow ring (resp. Chow ring modulo numerical equivalence) of X. It is well-known that $CH_{num}(X)_Q$ is a finite dimensional \mathbb{Q}-vector space. Then, we have the following commutative diagram:

$$
\begin{array}{ccc}
G_0(R)_Q & \xrightarrow{\tau_R} & A_*(R)_Q \\
\downarrow & & \downarrow \\
\overline{G_0(R)}_Q & \xrightarrow{\tau_R} & A_*(R)_Q \\
\end{array}
\quad \begin{array}{ccc}
& \phi & \quad \begin{array}{c}
CH(X)_Q/D \cdot CH(X)_Q \\
\downarrow & & \downarrow \\
CH_{num}(X)_Q/D \cdot CH_{num}(X)_Q \\
\end{array}
\end{array}
$$

(a) By the commutativity of this diagram, ϕ is a surjection. Therefore, we have

$$
\text{rank } \overline{G_0(R)} \leq \dim_Q CH_{num}(X)_Q/D \cdot CH_{num}(X)_Q. \tag{1}
$$

(b) If $CH(X)_Q \simeq CH_{num}(X)_Q$, then we can prove that ϕ is an isomorphism ([8], [13]). In this case, the equality holds in (1). Using it, we can show the following:

(i) If X is a blow-up at n points of \mathbb{P}^k ($k \geq 2$), then $\text{rank } \overline{G_0(R)} = n + 1$.

(ii) If $X = \mathbb{P}^m \times \mathbb{P}^n$, then $\text{rank } \overline{G_0(R)} = \min\{m, n\}$.

(c) There exists an example such that ϕ is not an isomorphism [13].

Further, Roberts and Srinivas [13] proved the following: Assume that the standard conjecture and Bloch-Beilinson conjecture are true. Then ϕ is an isomorphism if the defining ideal of R is generated by polynomials with coefficients in the algebraic closure of the prime field.

\footnote{We need the existence of a regular alteration in the proof of this result.}
Consider the groups $G_0(\mathbb{R}) \subset G_0(\mathbb{R})_\mathbb{Q} \subset G_0(\mathbb{R})_\mathbb{R}$. We shall define some cones in $G_0(\mathbb{R})_\mathbb{R}$.

Definition 4 Let $C_{CM}(R)$ be the cone (in $G_0(\mathbb{R})_\mathbb{R}$) spanned by all maximal Cohen-Macaulay R-modules.

$$C_{CM}(R) = \sum_{M: MCM} \mathbb{R}_{\geq 0}[M] \subset G_0(\mathbb{R})_\mathbb{R}.$$

We call it the **Cohen-Macaulay cone** of R. Thinking a free basis of $G_0(\mathbb{R})_\mathbb{R}$ as an orthonormal basis of $G_0(\mathbb{R})_\mathbb{R}$, we think $G_0(\mathbb{R})_\mathbb{R}$ as a metric space. Let $C_{CM}(R)^- \supset C_{CM}(R)$ be the closure of $C_{CM}(R)$ with respect to this topology on $G_0(\mathbb{R})_\mathbb{R}$.

We define the **strictly nef cone** by

$$SN(R) = \{ \alpha \mid \chi_F(\alpha) > 0 \text{ for any } F \in C_d(R) \}.$$

By the depth sensitivity, $\chi_F([M]) = \ell_R(H_0(F \otimes M)) > 0$ for any maximal Cohen-Macaulay module $M \neq 0$ and $F \in C_d(R)$. Therefore,

$$SN(R) \supset C_{CM}(R) - \{0\}.$$

Remark 5 Assume that R is a Cohen-Macaulay local domain. Let M be a torsion R-module. Taking sufficiently high syzygies of M, we know

$$\pm [M] + n[R] \in C_{CM}(R) \text{ for } n \gg 0.$$

Therefore, we have $\dim C_{CM}(R) = \text{rank } G_0(\mathbb{R})$ and

$$C_{CM}(R)^- \supset C_{CM}(R) \supset \text{Int}(C_{CM}(R)^-) = \text{Int}(C_{CM}(R)) \ni [R],$$

where $\text{Int}(\)$ denotes the interior.

Example 6 The following examples are given in [2]. Assume that k is an algebraically closed field of characteristic zero.

1. Put $R = k[x, y, z, w]/(xy - f_1 f_2 \cdots f_t)$. Here, we assume that f_1, f_2, \ldots, f_t are pairwise coprime linear forms in $k[z, w]$ with $t \geq 2$. In this case, we have rank $G_0(\mathbb{R}) = t$. We know (see [2]) that the Cohen-Macaulay cone is minimally spanned by the following $2^t - 2$ maximal Cohen-Macaulay modules of rank one:

$$\{(x, f_{i_1} f_{i_2} \cdots f_{i_s}) \mid 1 \leq s < t, \ 1 \leq i_1 < i_2 < \cdots < i_s \leq t\}$$

Here, remark that this ring is of finite representation type if and only if $t \leq 3$.

2. The Cohen-Macaulay cone of $k[x_1, x_2, \ldots, x_6]/(x_1 x_2 + x_3 x_4 + x_5 x_6)$ is not spanned by maximal Cohen-Macaulay modules of rank one. It is of finite representation type since it has a simple singularity.
3 Fundamental class

Definition 7 Let R be a d-dimensional Noetherian local domain. We put

$$
\mu_R = \tau_R^{-1}([\text{Spec } R]) \in G_0(R)_\mathbb{Q},
$$

where $\tau_R : G_0(R)_\mathbb{Q} \sim A_*(R)_\mathbb{Q}$ is the singular Riemann-Roch map, and $[\text{Spec } R]$ denotes the cycle in $A_*(R)$ corresponding to the scheme Spec R itself.

$$
\begin{align*}
G_0(R)_\mathbb{Q} & \rightarrow G_0(R)_\mathbb{Q} \\
\mu_R & \mapsto \overline{\mu_R}
\end{align*}
$$

We call the image of μ_R in $G_0(R)_\mathbb{Q}$ the fundamental class of R, and denote it by $\overline{\mu_R}$.

Remark that $\overline{\mu_R} \neq 0$ since $\text{rank}_R \mu_R = 1$.

Put $R = T/I$, where T is a regular local ring. The map τ_R is defined using not only R but also T. Therefore, μ_R may depend on the choice of T. However, we can prove that $\overline{\mu_R}$ is independent of T (Theorem 5.1 in [8]).

We shall explain the reason why we call $\overline{\mu_R}$ the fundamental class of R.

Remark 8 (1) If $X (= \text{Spec } R)$ is a d-dimensional affine variety over \mathbb{C}, we have the cycle map cl such that $cl([\text{Spec } R])$ coincides with the fundamental class μ_X in $H_{2d}(X, \mathbb{Q})$ in the usual sense, where $H_*(X, \mathbb{Q})$ is the Borel-Moore homology. Here μ_X is the generator of $H_{2d}(X, \mathbb{Q}) \cong \mathbb{Z}$.

$\begin{align*}
G_0(R)_\mathbb{Q} & \xrightarrow{\mu_R} A_*(R)_\mathbb{Q} \xrightarrow{cl} H_*(X, \mathbb{Q}) \\
[\text{Spec } R] & \mapsto \mu_X
\end{align*}$

The map cl induces the map $\overline{A_d(R)}_\mathbb{Q} \rightarrow H_{2d}(X, \mathbb{Q})$ such that the fundamental class μ_X is the image of $\overline{\tau_R(\overline{\mu_R})}$. Hence, we call $\overline{\mu_R}$ the fundamental class of R.

(2) Let R have a subring S such that S is a regular local ring and R is a localization of a finite extension of S. Let L be a finite-dimensional normal extension of $Q(S)$ containing $Q(R)$. Let B be the integral closure of R in L. Then, we have

$$
\mu_R = \frac{1}{\text{rank}_R B} [B] \text{ in } G_0(R)_\mathbb{Q}.
$$

In particular, $\overline{\mu_R} = \frac{|B|}{\text{rank}_R B} \text{ in } G_0(R)_\mathbb{Q}$ (see the proof of Theorem 1.1 in [6]).

(3) Assume that R is of characteristic $p > 0$ and F-finite. Assume that the residue class field is algebraically closed. By the singular Riemann-Roch theorem, we have

$$
\overline{\mu_R} = \lim_{e \to \infty} \frac{[e R]}{p^de} \text{ in } G_0(R)_\mathbb{R},
$$

where eR is the e-th Frobenius direct image (see Definition 13, 14 below). It immediately follows from the equations (7) and (9) below.

There is no example that the map τ_R actually depend on the choice of T. For some excellent rings, it had been proved that τ_R is independent of the choice of T (Proposition 1.2 in [7]).
Example 9
(1) If \(R \) is a complete intersection, then \(\mu_R \) is equal to \([R] \) in \(G_0(R)_Q \), therefore \(\overline{\mu_R} = [R] \) in \(\overline{G_0(R)}_Q \). There exists a Gorenstein ring such that \(\overline{\mu_R} \not= [R] \). However there exist many examples of rings satisfying \(\overline{\mu_R} = [R] \) ([7]). Roberts ([10], [11]) proved the vanishing property of intersection multiplicities for rings satisfying \(\overline{\mu_R} = [R] \).

(2) Let \(R \) be a normal domain. Then, we have

\[
\begin{align*}
G_0(R)_Q & \xrightarrow{\tau_R} A_*(R)_Q = A_d(R)_Q \oplus A_{d-1}(R)_Q \oplus \cdots \\
[R] & \mapsto \text{Spec } R - \frac{K_R}{2} + \cdots \\
[\omega_R] & \mapsto \text{Spec } R + \frac{K_R}{2} + \cdots
\end{align*}
\]

where \(K_R \) is the Weil divisor corresponding to the canonical module \(\omega_R \). If \(\tau_R^{-1}(K_R) \not\equiv 0 \) in \(\overline{G_0(R)}_Q \), then \([R] \not= \overline{\mu_R} \). Although the equality

\[
\overline{\mu_R} = \frac{1}{2}([R] + [\omega_R])
\]

is sometimes satisfied, it is not true in general.

(3) Let \(R = k[x_{ij}]/I_2(x_{ij}) \), where \((x_{ij}) \) is the generic \((m + 1) \times (n + 1)\)-matrix, and \(k \) is a field. Suppose \(0 < m \leq n \). Then, we have

\[
\begin{align*}
G_0(R)_Q & \simeq \overline{G_0(R)}_Q \\
[R] & \mapsto (\frac{a}{1-e^{-a}})^m (\frac{-a}{1-e^{-a}})^n \\
& = 1 + \frac{1}{2}(m - n)a + \frac{1}{24}(\cdots)a^2 + \cdots \\
[\omega_R] & \mapsto (\frac{-a}{1-e^{-a}})^m \\
\overline{\mu_R} & \mapsto 1 \\
\tau_R^{-1}(K_R) & \mapsto (n - m) \overline{\mu_R}
\end{align*}
\]

(4) By Remark 2.9 in [1], if \(\overline{\mu_R} \in CM(R) \), then there exists a maximal Cohen-Macaulay \(R \)-module \(N \) such that \([N] = \text{rank}_R N \cdot \overline{\mu_R} \) in \(G_0(R)_Q \).

Here, we shall explain the connection between the fundamental class \(\overline{\mu_R} \) and the homological conjectures.

Fact 10
(1) The small Mac conjecture is true if and only if \(\overline{\mu_R} \in CM(R) \) for any complete local domain \(R \) (Theorem 1.3 in [6]). We give an outline of the proof here.

“\(\text{If} \)” part is trivial. We shall show “\(\text{only if} \)” part. Suppose that \(S \) is a regular local ring such that \(R \) is a finite extension over \(S \). Let \(L \) be a finite-dimensional normal extension of \(Q(S) \) containing \(Q(R) \). Let \(B \) be the integral closure of \(R \) in \(L \). Then, \(B \) is finite over \(R \), and \(B \) is a complete local domain. Here, assume that there exists an maximal Cohen-Macaulay \(B \)-module \(M \). Put \(\text{Aut}_{Q(S)}(L) = \{ g_1, \ldots, g_t \} \) and \(N = \oplus_i (g_i, M) \), where \(g_i, M \) denotes \(M \) with \(R \)-module structure given by \(a \times m = g_i(a)m \). Then \(N \) is a maximal Cohen-Macaulay \(R \)-module such that \([N] = \text{rank}_R N \cdot \mu_R \) in \(G_0(R)_Q \). Therefore, \(\overline{\mu_R} = \frac{[N]}{\text{rank}_R N} \in CM(R) \).

Even if \(R \) is an equi-characteristic Gorenstein ring, it is not known whether \(\overline{\mu_R} \) is in \(CM(R) \) or not. If \(R \) is a complete intersection, then \(\overline{\mu_R} = [R] \in CM(R) \) as in (1) in Example 9.
(2) If $\overline{\mu_R} = [R]$ in $G_0(R)_R$, then the vanishing property of intersection multiplicities holds (Roberts [10], [11]).

(3) Roberts [12] proved $\overline{\mu_R} \in SN(R)$ if $ch(R) = p > 0$. Using it, he proved the new intersection theorem in the mixed characteristic case.

(4) If R contains a field, then $\overline{\mu_R} \in SN(R)$ (Kurano-Roberts [9]). Even if R is a Gorenstein ring (of mixed characteristic), we do not know whether $\overline{\mu_R} \in SN(R)$ or not.

(5) If $\overline{\mu_R} \in SN(R)$ for any R, then Serre’s positivity conjecture is true in the case where one of two modules is (not necessary maximal) Cohen-Macaulay.

It is well-known that Serre’s positivity conjecture follows from the small Mac conjecture.

Remark 11 (1) If R is Cohen-Macaulay of characteristic $p > 0$, then eR is a maximal Cohen-Macaulay module. Since $\overline{\mu_R}$ is the limit of $[^eR]/p^{de}$ in $G_0(R)_R$ as in Remark 8 (3), $\overline{\mu_R}$ is contained in $CCM(R)^-$. If we know that $CCM(R)$ is a closed set of $G_0(R)_R$, we have $\overline{\mu_R} \in CCM(R)^- = CCM(R)$. If the cone $CCM(R)$ is finitely generated, then it is a closed subset. We do not know any example that the cone $CCM(R)$ is not finitely generated.

In the case where R is not of characteristic $p > 0$, we do not know whether $\overline{\mu_R}$ is contained in $CCM(R)^-$ even if R is a Gorenstein ring.

(2) As we have already seen in Remark 5, if R is Cohen-Macaulay, then $[R] \in Int(CCM(R)) \subset CCM(R)$.

There is an example of non-Cohen-Macaulay ring R containing a field such that $[R] \not\in SN(R)$. On the other hand, it is expected that $\overline{\mu_R} \in SN(R)$ for any R (Fact 10 (4)). Therefore, for a non-Cohen-Macaulay local ring R, $\overline{\mu_R}$ behaves better than $[R]$ in a sense.

4 Main theorem

In Fact 10, we saw that the fundamental class $\overline{\mu_R}$ is deeply related to the homological conjectures. We propose the following question.

Question 12 Assume that R is a “good” Cohen-Macaulay local domain (for example, equicharacteristic, Gorenstein, etc). Is $\overline{\mu_R} \in CCM(R)$?

If R is a Cohen-Macaulay local domain such that the rank of $G_0(R)$ is one, then $[R] = \overline{\mu_R} \in CCM(R)$, therefore Question 12 is true in this case. There are a lot of such examples (for instance, invariant subrings with respect to finite group actions, etc.).

3It was conjectured above 50 years ago that $[R]$ was in $SN(R)$ for any local ring R. Essentially, the famous counter example due to Dutta-Hochster-MacLaughlin [3] gives an example $[R] \not\in SN(R)$.

7
Definition 13 Let p be a prime number and R be a Noetherian ring of characteristic p. Let $e > 0$ be an integer and

$$F^e : R \rightarrow R$$

be the e-th Frobenius map. We denote by eR the R-module R with R-module structure given by $r \times x = F^e(r)x$. It is called the e-th *Frobenius direct image*.

Definition 14 Let p be a prime number and R be a Noetherian ring of characteristic p. We say that R is *F-finite* if the Frobenius map $F : R \rightarrow R$ is finite.

Remark 15 Let R be a d-dimensional F-finite Noetherian local ring. We have the following commutative diagram (2) where the horizontal map τ_R is the singular Riemann-Roch map and the vertical maps are induced by F^e:

$$
\begin{array}{ccc}
G_0(R)_Q & \xrightarrow{\tau_R} & A_*(R)_Q \\
\downarrow F^e & & \downarrow F^e \\
G_0(R)_Q & \xrightarrow{\tau_R} & A_*(R)_Q
\end{array}
$$

By diagram (2), we have

$$\tau_R([eR]) = F^e(\tau_R([R])). \quad (3)$$

We set

$$\tau_R([R]) = \tau_R([R])_d + \tau_R([R])_{d-1} + \cdots + \tau_R([R])_0$$

where $\tau_R([R])_i \in A_i(R)_Q$ for $i = 0, \ldots, d$. Then, by the top term property [4], we know

$$\tau_R([R])_d = [\text{Spec } R] \in A_*(R)_Q. \quad (4)$$

Assume that (R, \mathfrak{m}) is a d-dimensional F-finite Noetherian local domain with residue class field R/\mathfrak{m} algebraically closed. For $\alpha \in A_i(R)_Q$ we have

$$F_* (\alpha) = p^i \alpha \quad (5)$$

by Lemma 16 below and the definition of F_* [4]. Therefore

$$F^e_* (\tau_R([R])) = p^{de}[\text{Spec } R] + \sum_{0 \leq i \leq d-1} p^i \tau_R([R])_i. \quad (6)$$

Hence, by the equations (3), (6), we have

$$\tau_R([eR])_i = p^e \tau_R([R])_i.$$

Therefore,

$$[eR] = p^{de} \tau_R^{-1}([\text{Spec } R]) + \sum_{0 \leq i \leq d-1} p^i \tau_R^{-1}(\tau_R([R])_i) \quad (7)$$

in $G_0(R)_Q$.

The following lemma is well-known. We omit a proof.
Lemma 16 Assume that R is an F-finite Noetherian local domain of characteristic p with residue class field algebraically closed. Then, for any $e > 0$, we have

$$\text{rank}_R^e R = p^{(\dim R)e}.$$

Definition 17 Let R be a Cohen-Macaulay ring of characteristic $p > 0$. We say that R is FFRT (of finite F-representation type) if there exist finitely many indecomposable maximal Cohen-Macaulay R-modules M_1, \ldots, M_s such that there exist nonnegative integers a_{e1}, \ldots, a_{es} with

$$^e R \simeq M_1^{ae1} \oplus \cdots \oplus M_s^{aes}$$

for each $e > 0$.

Definition 18 Let p be a prime number and R be a Noetherian ring of characteristic $p > 0$. Let R° be the set of elements of R that are not contained in any minimal prime ideals of R. Let I be an ideal of R. Given a natural number e, set $q = p^e$. The ideal generated by the q-th powers of elements of I is called the q-th Frobenius power of I, denoted by $I^{[q]}$. We define the tight closure I^* of I as follows:

$$I^* = \{ x \in R \mid \text{there exists } c \in R^\circ \text{ such that } cx^q \in I^{[q]} \text{ for } q \gg 0 \}.$$

We say that I is tightly closed if $I = I^*$.

Definition 19 Let R be a Noetherian local ring of characteristic $p > 0$. We say that R is F-rational if every parameter ideal is tightly closed.

Now, we start to prove Theorem 2 (1). Since R is FFRT, there exist finitely many indecomposable maximal Cohen-Macaulay R-modules M_1, \ldots, M_s such that there exist nonnegative integers a_{e1}, \ldots, a_{es} with

$$^e R \simeq M_1^{ae1} \oplus \cdots \oplus M_s^{aes}$$

for each $e > 0$. Let U be the \mathbb{Q}-vector subspace of $G_0(R)_{\mathbb{Q}}$ spanned by

$$\{[M_1], \ldots, [M_s]\} \cup \{\tau_R^{-1}(\tau_R([R]))_j \mid 0 \leq j \leq d\}.$$

Here, recall that $\mu_R = \tau_R^{-1}(\tau_R([R]))_d \in U$ by the top term property (4). Although we can show that U is spanned by $\{[M_1], \ldots, [M_s]\}$, we do not need it in this proof. Thinking a basis of U as an orthonormal basis of U_R, we think U_R as a metric space. Set $C = \sum_{i=1}^s \mathbb{R}_{\geq 0}[M_i] \subset U_R$. Then C is a closed subset of U_R. We shall show $\mu_R \in C$.

Since the residue field is algebraically closed, $\text{rank}_R^e R = p^{de}$ for any $e > 0$ by Lemma 16. Since

$$^e R = a_{e1}[M_1] \oplus \cdots \oplus a_{es}[M_s]$$

by (8), we have

$$\frac{1}{p^{de}} [^e R] \in C$$
for any $e > 0$. By the equation (7),
\[
\frac{1}{p^{de}}e^R = \sum_{0 \leq i \leq d} \frac{1}{p^{de}} \tau_R^{-1}(\tau_R([R])_{d-i}).
\] (9)

By the definition of U, every term of the right-hand side is in $U \mathbb{R}$. Hence we have
\[
\lim_{e \to \infty} \frac{1}{p^{de}}e^R = \tau_R^{-1}(\tau_R([R])_{d}) = \tau_R^{-1}([\text{Spec } R]) = \mu_R \text{ in } U \mathbb{R}.
\]

Since C is a closed set of $U \mathbb{R}$, we have $\mu_R \in C$. By the same argument as in Example 9 (4), there exist a natural number n and a maximal Cohen-Macaulay R-module N such that $n\mu_R = [N]$ in $G_0(R)Q$.

Next, we shall prove that $[\omega_R] \in \text{Int}(C_{CM}(R))$ if R is Cohen-Macaulay. We have a homomorphism $\xi : G_0(R)_R \to G_0(R)_R$ given by $\xi([M]) = \sum_i (-1)^i[\text{Ext}^i_R(M, \omega_R)]$. For a maximal Cohen-Macaulay module M, $\text{Ext}^i_R(M, \omega_R) = 0$ for $i > 0$ and $\text{Hom}_R(\text{Hom}_R(M, \omega_R), \omega_R) \simeq M$. Therefore, ξ^2 is equal to the identity, and ξ is an isomorphism. By the definition of τ_R, we have a commutative diagram
\[
\begin{array}{ccc}
G_0(R)_R & \xrightarrow{\tau_R} & A_*(R)_R \\
\xi \downarrow & & \phi \downarrow \\
G_0(R)_R & \xrightarrow{\tau_R} & A_*(R)_R
\end{array}
\]
where $\phi : A_*(R)_R \to A_*(R)_R$ is the map given by
\[
\phi(q_d + q_{d-1} + \cdots + q_i + \cdots + q_0) = q_d - q_{d-1} + \cdots + (-1)^{d-i}q_i + \cdots + (-1)^dq_0
\] (10)
for $q_i \in A_i(R)_R$. Since the numerical equivalence is graded in $A_*(R)_R$ as in Proposition 2.4 in [8], ϕ preserves the numerical equivalence. Therefore we have the induced map
\[
\bar{\xi} : \bar{G}_0(R)_R \to \bar{G}_0(R)_R.
\]
Remark that $\bar{\xi}$ is an isomorphism of \mathbb{R}-vector spaces since $\bar{\xi}^2$ is the identity. The map $\bar{\xi}$ satisfies $\bar{\xi}([R]) = [\omega_R]$ and $\bar{\xi}(C_{CM}(R)) = C_{CM}(R)$. Since $[R] \in \text{Int}(C_{CM}(R))$ by Remark 5, we obtain $[\omega_R] \in \text{Int}(C_{CM}(R))$.

Assume that M is a maximal Cohen-Macaulay module. For $e > 0$, consider the following exact sequence
\[
0 \to L_e \to F^e_*(M) \to M^{\oplus b_e} \to 0
\]
where $F^e_*(M)$ is the e-th Frobenius direct image of M. Take b_e as large as possible. Recall that L_e is a maximal Cohen-Macaulay module. Put $r = \text{rank}_R M$.

4Put $R = T/I$, where T is a regular local ring. Then, $\xi([M]) = (-1)^{ht(I)}\sum_i (-1)^i[\text{Ext}^i_T(M, T)]$. Let F_* be a T-free resolution of M. Then, by the definition of τ_R, we have $\tau_R([M]) = \text{ch}(F_*) \cap [\text{Spec } T]$, where $\text{ch}(F_*)$ is the localized Chern character of F_*. (§18 in [4]). By the local Riemann-Roch formula (Example 18.3.12 in [4]), $\tau_R([M]) = \text{ch}(F_*^{\bullet}[ht(I)]) \cap [\text{Spec } T]$. By Example 18.1.2, we obtain the equality (10).
Here we define the dual F-signature following Sannai [14] as follows:

\[s(M) = \limsup_{e \to \infty} \frac{b_e}{r p^{de}} \]

Then, taking a subsequence of \(\{ \frac{b_e}{r p^{de}} \} \), we may assume that \(s(M) = \lim_{e \to \infty} \frac{b_e}{r p^{de}} \).

On the other hand, consider

\[\tau_R([M]) = \tau_R([M])_d + \tau_R([M])_{d-1} + \cdots + \tau_R([M])_0. \]

Here, we have \(\tau_R([M])_d = r[\text{Spec } R] \) since \([M] - r[R] \) is a sum of cycles of torsion modules. By (2) and (5),

\[\tau_R([F^*_e(M)]) = F^*_e(\tau_R([M]))_d + \tau_R([M])_{d-1} + \cdots + \tau_R([M])_0. \]

Then, we have

\[\tau_R(\lim_{e \to \infty} \frac{F^*_e([M])}{r p^{de}}) = \frac{\tau_R([M])_d}{r} = [\text{Spec } R] \text{ in } \overline{A_s(R)}_R. \]

Thus,

\[\lim_{e \to \infty} \frac{[F^*_e(M)]}{r p^{de}} = \overline{\mu}_R \text{ in } \overline{G_0(R)}_R. \]

Then, \(\frac{[L_e]}{r p^{de}} \) converges to some element in \(\overline{G_0(R)}_R \), say \(\alpha(M) \).

\[\frac{[F^*_e([M])]}{r p^{de}} \downarrow \frac{b_e[M]}{r p^{de}} \downarrow \frac{[L_e]}{r p^{de}} \downarrow \overline{G_0(R)}_R \]

\[\overline{\mu}_R = s(M)[M] + \alpha(M) \]

Since \(L_e \) is a maximal Cohen-Macaulay module, we know \(\alpha(M) \in C_{CM}(R)^- \).

Here set \(M = \omega_R \). Then

\[\overline{\mu}_R = s(\omega_R)[\omega_R] + \alpha(\omega_R) \in \overline{G_0(R)}_R, \quad \text{(11)} \]

where

\[\alpha(\omega_R) \in C_{CM}(R)^- \quad \text{(12)} \]

and

\[[\omega_R] \in \text{Int}(C_{CM}(R)) = \text{Int}(C_{CM}(R)^-). \quad \text{(13)} \]

The most important point in this proof is the fact that

\(R \) is F-rational if and only if \(s(\omega_R) > 0 \)

due to Sannai [14].

Therefore, if \(R \) is F-rational, then \(\overline{\mu}_R \in \text{Int}(C_{CM}(R)) \) by (11), (12), (13) and Remark 5.

q.e.d.

Remark 20 If \(R \) is a toric ring (a normal semi-group ring over a field \(k \)), then we can prove \(\overline{\mu}_R \in C_{CM}(R) \) as in the case FFRT without assuming that \(ch(k) \) is positive.
Problem 21 (1) As in the above proof, if there exists a maximal Cohen-Macaulay module in $\text{Int}(C_{CM}(R))$ such that its generalized F-signature or its dual F-signature is positive, then $\overline{\mu_R}$ is in $\text{Int}(C_{CM}(R))$.

Without assuming that R is F-rational, do there exist such a maximal Cohen-Macaulay module?

(2) How do we make mod p reduction? (for example, the case of rational singularity)

(3) If R is Cohen-Macaulay, is $\overline{\mu_R}$ in $C_{CM}(R)^-$? If R is a Cohen-Macaulay ring containing a field of positive characteristic, then $\overline{\mu_R}$ in $C_{CM}(R)^-$ as in (1) in Remark 11.

(4) If R is of finite representation type, is $\overline{\mu_R}$ in $C_{CM}(R)$?

(5) Find more examples of $C_{CM}(R)$ and $SN(R)$.

In order to prove the following corollary, it is enough to construct a d-dimensional Cohen-Macaulay local domain A satisfying the following two conditions (Lemma 3.1 in [1]):

(1) $\overline{A_i(A)} \neq 0$ for $d/2 < i \leq d$, and

(2) $\overline{\mu_A}$ is contained in $\text{Int}(C_{CM}(A))$.

The ring R in Corollary 22 is the idealization of A and certain maximal Cohen-Macaulay A-module M. We can simplify the proof of Corollary 22 using Theorem 2. We know that $k[x_{ij}]_{(x_{ij})}/I_2(x_{ij})$ satisfies the conditions (1) and (2) above, where (x_{ij}) is the generic $n \times n$ or $n \times (n+1)$ matrix, and $I_2(x_{ij})$ stands for the ideal generated by 2-minors of (x_{ij}). In fact, by Example 3 (2) (b) and Example 9 (3), the condition (1) is satisfied. Since $k[x_{ij}]_{(x_{ij})}/I_2(x_{ij})$ is F-rational, the condition (2) is satisfied by Theorem 2 (2).

Corollary 22 ([1]) Let d be a positive integer and p a prime number. Let $\epsilon_0, \epsilon_1, \ldots, \epsilon_d$ be integers such that

$$\epsilon_i = \begin{cases} 1 & i = d, \\ -1, 0 \text{ or } 1 & d/2 < i < d, \\ 0 & i \leq d/2. \end{cases}$$

Then, there exists a d-dimensional Cohen-Macaulay local ring R of characteristic p, a maximal primary ideal I of R of finite projective dimension, and positive rational numbers $\alpha, \beta_{d-1}, \beta_{d-2}, \ldots, \beta_0$ such that

$$\ell_R(R/I[p^n]) = \epsilon_d \alpha p^{dn} + \sum_{i=0}^{d-1} \epsilon_i \beta_i p^{in}$$

for any $n > 0$.

12
References

Department of Mathematics
School of Science and Technology
Meiji University
Higashimata 1-1-1, Tama-ku
Kawasaki 214-8571, Japan