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Abstract. The aim of this paper is to define the notion of the Cohen-Macaulay

cone of a Noetherian local domain R and to present its applications to the theory

of Hilbert-Kunz functions. It has been shown in [16] that, with a mild condition

on R, the Grothendieck group G0(R) of finitely generated R-modules modulo

numerical equivalence is a finitely generated torsion-free abelian group. The

Cohen-Macaulay cone of R is the cone in G0(R)R spanned by cycles represented

by maximal Cohen-Macaulay modules. We study basic properties on the Cohen-

Macaulay cone in this paper. As an application, various examples of Hilbert-

Kunz functions in the polynomial type will be produced. Precisely, for any

given integers ϵi = 0,±1 (d/2 < i < d), we shall construct a d-dimensional

Cohen-Macaulay local ring R (of characteristic p) and a maximal primary ideal

I of R such that the function ℓR(R/I [p
n]) is a polynomial in pn of degree d

whose coefficient of (pn)i is the product of ϵi and a positive rational number

for d/2 < i < d. The existence of such ring is proved by using Segre products

to construct a Cohen-Macaulay ring such that the Chow group of the ring is of

certain simplicity and that test modules exists for it.

1. Introduction

Let R be a Noetherian local domain. In this paper, we introduce the notion

of the Cohen-Macaulay cone and test modules of R. As an application, for any

given integers ϵi = 0,±1 (d/2 < i < d), we shall construct a d-dimensional Cohen-

Macaulay local ring R (of characteristic p) and a maximal primary ideal I of R such

that the function ℓR(R/I
[pn]) is a polynomial in pn of degree d whose coefficient of

(pn)i is the product of ϵi and a positive rational number for d/2 < i < d.

The main materials are divided into three parts. First part is an introduction

to the theory of the Cohen-Macaulay cone and test modules. Then we prove
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the existence of a Cohen-Macaulay ring such that its Chow group of the ring is

of certain simplicity and it has a test module. Using the ring just constructed,

we shall further build a ring whose Hilbert-Kunz function satisfies the required

conditions.

We now describe in more detail these new notions, and in the case of positive

characteristic, their contribution to the theory of Hilbert-Kunz functions.

Let R be a Noetherian local domain of dimension d. The Grothendieck group

G0(R) of finitely generated R-modules modulo numerical equivalence is defined

and studied in [16] where it is proven that under a mild condition G0(R) is a

finitely generated torsion-free abelian group (see also Theorem 2.1 in Section 2).

Let ρ(R) denote the rank of G0(R). In this paper, we let R be a Cohen-Macaulay

local domain and introduce a cone inside Rρ(R) = G0(R) ⊗Z R consisting of all

nonnegative linear combinations of maximal Cohen-Macaulay modules. This is

called the Cohen-Macaulay cone of R. A module M is a test module if M is a

maximal Cohen-Macaulay module such that its Todd class consists of only the top

term; i.e., τR([M ]) ∈ Ad(R)Q. In the case where R is an F-finite Cohen-Macaulay

local ring (of positive characteristic p) with algebraically closed residue class field,

M is a test module if and only if it is a maximal Cohen-Macaulay module such

that

[F eM ] = pde[M ] in G0(R)Q

for some (any) e > 0, where [F eM ] denotes the R-module M whose R-module

structure is given by the e-th power of the Frobenius map. If the small Cohen-

Macaulay conjecture is affirmative, then any Noetherian local ring has a test mod-

ule. However, the authors do not know whether test modules exist or not even if

R is a Gorenstein ring. We refer the readers to [14] for test modules; however, the

definition of test modules in this paper is slightly different from that in [14]. In

this paper, we need test modules which contain the ring as a direct summand, that

is, test modules which are in the interior of the Cohen-Macaulay cone of R. The

ideas of these new notions are motivated by the studies of Hilbert-Kunz functions.

Assume additionally that R has a positive characteristic p with dimension d.

Let I be a maximal primary ideal. The Hilbert-Kunz function with respect to I,

named by Monsky [20], is defined as

φR(n) = length (R/I [p
n]R)

where I [p
n] is the Frobenius n-th power of I. Unlike the usual Hilbert function,

the shape of the Hilbert-Kunz function varies from case to case. Monsky proved

that φM (n) = eHK(I,M) pnd +O(pn(d−1)) for some positive constant eHK(I,M).
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Its stability has been studied in Huneke-McDermott-Monsky [12], Fakhruddin-

Trivedi [8], Brenner [1], Hochster-Yao [11], Chan-Kurano [3], etc.

Classically from Macaulay’s theorem one knows what numerical functions are

Hilbert functions (c.f. [2, Section 4.2]). Similarly for the Hilbert-Kunz function,

it is natural to ask what functions are Hilbert-Kunz functions. But the latter

is a much more subtle question since the shape of a Hilbert-Kunz function is

unpredictable in general. In [17, Example 3.1(3)], the second author proved that

if I is a maximal primary ideal of a local ring R that satisfies the following two

conditions

• R is an F -finite Cohen-Macaulay local ring whose residue class field is

algebraically closed, and

• I has finite projective dimension,

then the Hilbert-Kunz function of R with respect to I is a polynomial of pn (see

also [16] and [3, Lemma 3.4]). We refer the reader to MacDonnell [19] in the case

where I is a homogeneous ideal. One aim of this paper is to prove the following

theorem:

Theorem 1.1. Let d be a positive integer and p a prime number. Let ϵ0, ϵ1, . . . ,

ϵd be integers such that

ϵi =


1 i = d,

−1, 0 or 1 d/2 < i < d,

0 i ≤ d/2.

Then, there exists a d-dimensional Cohen-Macaulay local ring R of characteris-

tic p, a maximal primary ideal I of R of finite projective dimension, and positive

rational numbers α, βd−1, βd−2,. . . , β0 such that

ℓR(R/I
[pn]) = ϵdαp

dn +
d−1∑
i=0

ϵiβip
in

for any n > 0.

The proof of Theorem 1.1 is established by constructing a test moduleM over a

Cohen-Macaulay ring whose rational Chow group A∗(R)Q is of certain simplicity.

To determine how the Todd class of a module looks is very difficult in general since

G0(R)Q is too big. As mentioned earlier G0(R)R is a finite dimensional R-vector
space of dimension ρ(R). We denote the Cohen-Macaulay cone

∑
M :MCM R≥0[M ]

in Rρ(R) = G0(R)R by CCM (R). Then we prove that the existence of a test mod-

ule is equivalent to certain properties on the projections of the Cohen-Macaulay
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cone CCM (R) in the Chow group A∗(R)R via the Riemann-Roch map τR (Theo-

rem 2.12).

Assume that R is a Cohen-Macaulay local domain. If dimR ≤ 2, then ρ(R) = 1.

If dimR ≥ 3, then there is no upper bound for ρ(R). In either case, the Cohen-

Macaulay cone has the maximal possible dimension, i.e., dimRCCM (R) = ρ(R).

Indeed if ρ(R) = 1, then CCM (R) is obviously a half line. For arbitrary ρ(R),

we prove that there is an open neighborhood U of [R] in Rρ(R) such that U is

contained in the interior of CCM (R). This is proved in Lemma 2.5 along with

other properties of the Cohen-Macaulay cone.

If the ring R is of finite Cohen-Macaulay type—namely, there exist only finitely

many indecomposable isomorphism classes of maximal Cohen-Macaulay modules—

then the cone is finitely generated and so it is closed in Rρ(R) under the usual

topology for the Euclidean space. The Cohen-Macaulay cone in general may not

be finitely generated, but the authors do not know a Cohen-Macaulay ring R whose

CCM (R) is not closed.

In order to know how the notion of Cohen-Macaulay cones and test modules are

applied in the study of Hilbert-Kunz functions, we provide a conceptual sketch of

a key step in the proof of Theorem 1.1. The idea presented below is loosely about

Step 2.

By the singular Riemann-Roch theorem, the coefficients of the Hilbert-Kunz

function with respect to I of finite projective dimension over a Cohen-Macaulay

ring can be expressed in terms of the localized Chern characters. Precisely it

says that the coefficient of (pn)i is chi(G•)(τR([R])i) where G• is the resolution of

R/I and τR([R])i in Ai(R)R is the i-th Todd class of R. Thus to obtain desired

coefficients for the Hilbert-Kunz function is equivalent to obtaining the values of

the corresponding localized Chern characters when applied to the Todd classes of

R.

We prove Theorem 1.1 by constructing a module over a Cohen-Macaulay ring

A such that the i-th Todd class of the module in Ai(A)Q for each i has the de-

sired value when the localized Chern character is applied to it. Then we take the

idealization of the module to obtain a ring whose Hilbert-Kunz function has the

reqired form. The module just described is constructed by induction on i, so the

initial step that shows the existence of a ring A that possesses certain properties

and a test module is crucial. This is done in Lemma 3.1.

Last, we would like to make a remark without the intension of getting into

any technical detail in the present paper. In Theorem 1.1, the coefficients of

the polynomial are assumed to be zero in the terms of degree d/2 or lower. This
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assumption is made due to the fact that Ai(R)Q = 0 for i ≤ d/2 (for a homogeneous

coordinate ring R of a smooth projective variety) if the Grothendieck’s standard

conjecture holds (c.f. [16, Remark 7.12]). There is no known example where

Ai(R)Q does not vanish for some i ≤ d/2.
The paper is organized as follows. Section 2 introduces the Cohen-Macaulay

cone of an arbitrary local domain and the definition of test modules. Basic prop-

erties of these new notions are proved. In Example 2.10, assuming R is complete or

essentially of finite type over a field, we construct some examples of test modules.

We also prove equivalence conditions of the existence of test modules; for a general

local domain, it can be found in Remark 2.9. Main results about such equivalence

for Cohen-Macaulay rings are stated and proven in Theorem 2.12.

Section 3 discusses the Hilbert-Kunz functions and proves Theorem 1.1, which

constructs rings whose Hilbert-Kunz function is of the required form. For Theo-

rem 1.1, we need Lemma 3.1, which assures the existence of a Cohen-Macaulay

ring such that it has test modules and its numerical Chow group satisfies certain

properties. The proof of Lemma 3.1 deserves independent attention and so Sec-

tion 4 is devoted to proving this lemma. The Chow group of X = Pm×Pn and the

Riemann-Roch map τX : G0(X)Q → A∗(X)Q have been carefully studied by the

second author [13]. Lemma 3.1 is proven by taking appropriate Segre products of

graded rings and utilizing the special properties on τX and A∗(X)Q.

2. Cohen-Macaulay cone

Let (R,m) be a d-dimensional Noetherian local domain. We always assume that

local domains are homomorphic images of regular local rings and assume that one

of two conditions in Theorem 2.1 is satisfied.

Further, in this paper, we assume that all modules are finitely generated. Let

G0(R) be the Grothendieck group of finitely generated R-modules.

We put

C(R) =

{
F.

∣∣∣∣∣ bounded complex of finite R-free modules,

Hi(F.) has finite length for any i

}
.

For F. ∈ C(R), we define an additive map

χF. : G0(R) −→ Z

by

χF.([M ]) =
∑
i

(−1)iℓR(Hi(F.⊗M)).
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We set

G0(R) = G0(R)/{c ∈ G0(R) | χF.(c) = 0 for any F. ∈ C(R)}.

Theorem 2.1 (Kurano, [16] Theorem 3.1 and Remark 3.5). Assume that a Noe-

therian local domain R satisfies one of the following two conditions:

• R is an excellent ring such that R contains Q.

• R is essentially of finite type over a field, Z or a complete discrete valuation

ring.

Then, G0(R) is a finitely generated free Z-module.

If Spec(R) has a resolution of singularities or a regular alteration, then the above

theorem is still true for such R without assuming one of two conditions above.

Let ρ(R) be the rank of G0(R). Note that ρ(R) is always positive, that is

G0(R) ̸= 0. Indeed consider the Koszul complex K. of some system of parameters

a of R. Then χK.([R]) is equal to the Hilbert-Samuel multiplicity of R with respect

to the ideal generated by a (c.f. [25] Chapter IV Theorem 1). So χK.([R]) ̸= 0.

This shows that [R] is not zero in G0(R) by definition (c.f. [16] page 582). If

d ≤ 2, then ρ(R) = 1 (see [16] Proposition 3.7). For any given d ≥ 3, there is no

upper bound for ρ(R) (see [16] Example 4.1).

Proposition 2.2. The following conditions are equivalent:

(1) ρ(R) = 1.

(2) G0(R) = Z[R].
(3) For any F. ∈ C(R) and any R-module M with dimM < d, χF.([M ]) = 0.

(4) For any F. ∈ C(R) and any R-module M ,

χF.([M ]) = rankRM · χF.([R]).

Proof. It is easy to see (4) =⇒ (3) =⇒ (2) =⇒ (1).

We shall prove (1) =⇒ (4). Let K. be the Koszul complex of some system

of parameters a. Then by Serre’s theorem (c.f. [25] Chapter IV Theorem 1),

χK.([M ]) = eI(M) where eI(−) denotes the Hilbert-Samuel multiplicity with re-

spect to the ideal I generated by a. Since eI(M) = rankRM · eI(R), we have

χK.([M ]) = rankRM · χK.([R]).

On the other hand, note that χK.([R]) = eI(R) ̸= 0. Therefore, [R] ̸= 0 in G0(R)Q.

Thus G0(R)Q = Q[R] by the condition (1). We write [M ] = r[R] in G0(R)Q for

some rational number r. Thus for every F. ∈ C(R), χF.([M ]) = r · χF.([R]). In

particular,

r · χK.([R]) = χK.([M ]) = rankRM · χK.([R]).
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This shows r = rankRM and [M ] = rankRM · [R] in G0(R)Q. Therefore, the

condition (4) is satisfied. □

Remark 2.3. Suppose F. ∈ C(R). Assume that F. is not exact and the length of

F. is d, that is,

F. : 0→ Fd → Fd1 → · · · → F1 → F0 → 0.

Let M be a finitely generated R-module. By induction on the depth, we have

depth(M) = d − max{i|Hi(F. ⊗R M) ̸= 0}. If M is a maximal Cohen-Macaulay

module, then Hi(F.⊗R M) = 0 for i > 0. Thus,

χF.([M ]) = ℓ(H0(F.⊗R M)) > 0.

We think that cycles in G0(R)R represented by maximal Cohen-Macaulay mod-

ules are positive elements in a sense.

In this paper, Q≥0 (resp. R≥0) denotes the set of non-negative rational (resp.

real) numbers. Further, Q+ (resp. R+) denotes the set of positive rational (resp.

real) numbers.

Definition 2.4. Set

CCM (R) =
∑

M :MCM

R≥0[M ] ⊂ G0(R)R,

where M runs over all maximal Cohen-Macaulay R-modules in the above sum-

mation. We call it the CM (Cohen-Macaulay) cone of R. Let CCM (R)− be the

closure of CCM (R) in G0(R)R with respect to the usual topology on the Euclidean

space Rρ(R).

The CM cone CCM (R) and its closure CCM (R)− are convex cones by definition.

The authors do not have an example where CCM (R) is a proper subset of its

closure. (We know that CCM (R)− is a strongly convex cone by a recent result due

to Dao and Kurano [7]. We do not need this result in this paper.)

Set

Nef(R) = {c ∈ G0(R)R | χF.(c) ≥ 0 for any F. ∈ C(R) of length d}.

We call it the nef (numerically effective) cone of R.

Lemma 2.5. Let R be a Cohen-Macaulay local domain.

(1) Let c be in
∑

M :MCM Q≥0[M ]. Then, there exists a positive integer n and

a maximal Cohen-Macaulay module M such that

nc = [M ] in G0(R)R.
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(2) Let c be an element in CCM (R). For any open subset U of G0(R)R con-

taining c,

U ∩
∑

M :MCM

Q≥0[M ] ̸= ∅.

(3)

CCM (R) ∩G0(R)Q ⊂
∑

M :MCM

Q≥0[M ] ⊂ G0(R)R

is satisfied.

(4)

CCM (R) ⊂ CCM (R)− ⊂ Nef(R) ⊂ G0(R)R.

(5)

Nef(R) ∩ −Nef(R) = {0}.
(6) If R is of finite Cohen-Macaulay representation type, then

CCM (R) = CCM (R)−.

(7) There exists an open set U of G0(R)R such that [R] ∈ U ⊂ CCM (R).

(8)

Int(CCM (R)−) ⊂ CCM (R).

Proof. It is easy to see (1).

Here, we shall prove (2). Put c =
∑

i ri[Mi], where ri ∈ R+ andMi is a maximal

Cohen-Macaulay module for each i. We choose r′i ∈ Q+ sufficiently near ri for each

i. Then
∑

i r
′
i[Mi] is in U .

We shall prove (3). It is sufficient to show that, for a finite number of maximal

Cohen-Macaulay modules M1, . . . , Ms,
s∑

i=1

R≥0[Mi] ∩G0(R)Q ⊂
s∑

i=1

Q≥0[Mi]

in G0(R)R.

Let c =
∑

i hi[Mi] (hi ∈ R+) be in the left-hand side in the above. First, remark

that
s∑

i=1

R[Mi] ∩G0(R)Q =

s∑
i=1

Q[Mi].

Therefore,

c =

s∑
i=1

qi[Mi]

for qi ∈ Q (i = 1, . . . , s). Here, we put

W = {(α1, . . . , αs) ∈ Qs |
∑
i

αi[Mi] = 0} ⊂ Qs.
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Then,

(h1 − q1, . . . , hs − qs) ∈W ⊗Q R

Therefore, there exists (β1, . . . , βs) ∈ W sufficiently near (h1 − q1, . . . , hs − qs).

Then,

c =

s∑
i=1

(qi + βi)[Mi]

where qi + βi ∈ Q+ for i = 1, . . . , s.

(4) immediately follows from Remark 2.3.

We shall prove (5). Let c ∈ Nef(R) ∩ −Nef(R). For F. ∈ C(R) of length d, we
have χF.(c) ≥ 0 and χF.(−c) ≥ 0. Thus, we have χF.(c) = 0. By Proposition 2 in

[23], the set of complexes of length d generates the Grothendieck group of C(R).

Therefore, c is numerically equivalent to 0.

(6) is easy.

Next, we shall prove (7). Let T1, . . . , Tρ be torsion R-modules such that

• {[T1], . . . , [Tρ−1], [R]} is a basis of the Q-vector space G0(R)Q, and

• [T1] + · · ·+ [Tρ−1] + [Tρ] = 0 in G0(R)Q.

Let Mi be the k-th sygyzy of Ti, where k is an even integer bigger than d. Then,

Mi is a maximal Cohen-Macaulay module such that

[Mi] = (rankRMi)[R] + [Ti]

in G0(R)Q. Then, we have

[M1] + · · ·+ [Mρ−1] + [Mρ] =

(∑
i

rankRMi

)
[R]

in G0(R)Q. By the above equations,

{[M1], . . . , [Mρ−1], [Mρ]}

is a basis of the R-vector space G0(R)R. We know that [R] is in interior of the

cone spanned by [M1], . . . , [Mρ−1], [Mρ].

Lastly, we shall prove (8). Suppose that 0 ̸= c ∈ Int(CCM (R)−). There ex-

ists an open neighborhood U of c such that U is a subset of CCM (R)−. Choose

e1, . . . , eρ−1 ∈ G0(R)R such that {e1, . . . , eρ−1, c} is an R-basis of G0(R)R. Tak-

ing ei’s small enough, we may assume c + ei ∈ U for i = 1, . . . , ρ − 1, and

c − e1 − · · · − eρ−1 ∈ U . We put si = c + ei for i = 1, . . . , ρ − 1 and sρ =

c− e1 − · · · − eρ−1. Then s1, . . . , sρ are in U such that

s1 + · · ·+ sρ = ρ · c
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in G0(R)R, and {s1, · · · , sρ−1, sρ} is a basis of the R-vector space G0(R)R. Each

point in U is the limit of a sequence in CCM (R). Therefore, there exist s′1, . . . , s
′
ρ

such that

• s′1, . . . , s′ρ ∈ CCM (R),

• {s′1, . . . , s′ρ} is a basis of the R-vector space G0(R)R, and

• c is in the cone spanned by s′1, . . . , s
′
ρ.

Hence c is in CCM (R). □

Example 2.6. Let

R = k[x, y, z, w](x,y,z,w)/(xy − zw)

Then,

{R,P,Q}

is the set of isomorphism classes of indecomposable maximal Cohen-Macaulay

modules (see Yoshino [27]), where P = (x, z), Q = (x,w). In this case, ρ(R) = 2,

and

CCM (R) = CCM (R)− = R≥0[P ] + R≥0[Q] ⊂ Nef(R).

Remark 2.7 (Riemann-Roch theory). We have an isomorphism of Q-vector spaces

G0(R)Q
τR−→ A∗(R)Q = ⊕d

i=0Ai(R)Q

as in [9] and [22]. Then, we have Ad(R)Q = Q[Spec(R)] and pdτR([M ]) = rankRM ·
[Spec(R)] where pd is the projection A∗(R)→ Ad(R).

Put τR([R]) = cd + cd−1 + · · ·+ c0, where ci ∈ Ai(R)Q. Then,

(1) cd = [Spec(R)].

(2) If R is a complete intersection, τR([R]) = cd.

(3) If R is Cohen-Macaulay,

τR([ωR]) = cd − cd−1 + cd−2 − cd−3 + · · · ,

where ωR is the canonical module of R.

(4) If R is Gorenstein,

cd−1 = cd−3 = cd−5 = . . . = 0.

(5) IfR is normal, we have an isomorphism Ad−1(R) ≃ Cl(R) by [Spec(R/I)] 7→
−cl(I), where cl(I) denotes the isomorphism class of a divisorial ideal I.

Then, we have

cd−1 = −
cl(ωR)

2
.

(6) Localization of Galois extension of a regular local ring satisfies τR([R]) = cd.
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As in [16], we can define Ai(R) such that the following diagram is commutative:

(2.1)

G0(R)Q
τR−→ A∗(R)Q

↓ ↓
G0(R)Q

τR−→ A∗(R)Q
↓ ↓

G0(R)R
τR−→ A∗(R)R

Definition 2.8. We say that R-module M is an R-test module if the following

two conditions are satisfied:

(1) M is a non-zero maximal Cohen-Macaulay module.

(2) τR([M ]) = rankRM · [Spec(R)] in A∗(R)Q.

The above condition (2) is equivalent to τR([M ]) ∈ Ad(R)Q.

The definition of test modules here is a little different from that in [14].

For F. ∈ C(R), the Dutta multiplicity (limit multiplicity) is defined to be

χ∞(F.) = χF.(τ
−1
R ([Spec(R)])).

If M is an R-test module and F. is a complex in C(R) of length d, then

(2.2) χ∞(F.) =
1

rankRM
χF.([M ]) =

1

rankRM
ℓR(H0(F.⊗R M)) > 0.

For a non-exact complex in C(R) of length d, χ∞(F.) is positive if R contains

a field ([21], [18], [14]). Positivity of χ∞(F.) for a non-exact complex in C(R)

of length d is an open question for the mixed characteristic case. By (2.2), this

question is true for R which possesses a test module.

Remark 2.9. A local ring R has a test module if and only if

(2.3) τR
−1([Spec(R)]) ∈ CCM (R)

as follows. The key point is that τR
−1([Spec(R)]) is in G0(R)Q by the commuta-

tivity of the diagram (2.1). If (2.3) is satisfied, then we have

τR
−1([Spec(R)]) ∈ CCM (R) ∩G0(R)Q ⊂

∑
M :MCM

Q≥0[M ]

by Lemma 2.5 (3). Then, by Lemma 2.5 (1), we know the existence of R-test

modules.

Example 2.10. Let R be a Noetherian local domain of dimension d. Suppose that

R contains an excellent regular local ring S, and let A be the integral closure of

S in R. We assume that A is a finitely generated S-module, and R coincides with

AP for some prime ideal P of A. (We remark that such S exists if R is complete

or essentially of finite type over a field.)
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When the characteristic of S is positive, we further assume that S is F-finite.

Let L be a finite dimensional normal extension of Q(S) containing Q(A) where

Q(S) and Q(A) denote the field of fractions of S and A respectively. Let B be the

integral closure of S in L. Since S is excellent, B is a finitely generated A-module.

Thus B ⊗A R is a finitely generated R-module.

(1) Applying the method in [15], we obtain

τR([B ⊗A R]) ∈ Ad(R)Q,

that is,

[B ⊗A R] = rankR(B ⊗A R) · τ−1
R ([Spec(R)])

in G0(R)Q. Therefore, if B ⊗A R is a Cohen-Macaulay ring, then B ⊗A R

is an R-test module.

(2) Put G = AutQ(S)(L). Assume that N is a maximal Cohen-Macaulay B-

module. For each g ∈ G, we give another B-module structure to N by

B ×N −→ N

(b, n) 7→ g(b)n.

We denote this B-module by gN . We put

M =
⊕
g∈G

gN.

Then, we have

[M ] = rankA(M) · τ−1
A ([Spec(A)])

in G0(A)Q. Changing the base regular scheme using Lemma 4.1 (c) in [15],

we obtain

[M ⊗A R] = rankR(M ⊗A R) · τ−1
R ([Spec(R)])

in G0(R)Q; therefore M ⊗A R is an R-test module.

Remark 2.11. (1) If any local ring has a test module, then a conjecture (a

positivity conjecture of Dutta multiplicity) is true (see (2.2), [14] Conjec-

ture 3.3 and Proposition 4.3).

(2) Let R be a complete local domain. If the small Cohen-Macaulay conjecture

is true, then R has a test module (see Example 2.10 and [14] Theorem 1.3).

(3) Even if R is a Gorenstein ring, we do not know whether R has a test module

or not. If R is a complete intersection, then R itself is an R-test module.
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The following is the main theorem of this section. We denote by pi the projection

A∗(R)R = ⊕d
i=0Ai(R)R → Ai(R)R.

Theorem 2.12. Let (R,m) be a Cohen-Macaulay local domain. Consider the

following conditions:

(i) τR
−1([Spec(R)]) ∈ Int(CCM (R)−)

(ii) R has a test module which contains R as a direct summand.

(iii) For i = 0, 1, . . . , d− 1, piτR(CCM (R)) = Ai(R)R.

(iv) For i = 0, 1, . . . , d− 1, piτR(CCM (R)−) = Ai(R)R.

Then, we have

(i)⇐⇒ (ii) =⇒ (iii)⇐⇒ (iv).

If R is F-finite of characteristic p > 0 and R/m is algebraically closed, then

above four conditions are equivalent to each other.

Proof. (i) =⇒ (ii). There exists a positive integer n such that

nτR
−1([Spec(R)])− [R] ∈ Int(CCM (R)−) ∩G0(R)Q ⊂ CCM (R) ∩G0(R)Q

by Lemma 2.5 (8). By Lemma 2.5 (1), (3), there exists a maximal Cohen-Macaulay

module M such that

(2.4) [R] + [M ] = n′τR
−1([Spec(R)])

for some n′ > 0.

(ii) =⇒ (i). Let N0 be a module over R such that N = R ⊕ N0 is a test

module. Let M = N0 ⊕N . Then M is a maximal Cohen-Macaulay module, and

we have an equality as (2.4) in which n′ = 2 rankRN . Since [R] ∈ Int(CCM (R)−)

by Lemma 2.5 (7) and [M ] ∈ CCM (R), [R⊕M ] is also in Int(CCM (R)−).

(iii) =⇒ (iv) is trivial.

(iv) =⇒ (iii). Since

piτR(CCM (R)−) ⊂ (piτR(CCM (R)))−,

we have (piτR(CCM (R)))− = Ai(R)R. Note that piτR(CCM (R)) is a cone in

Ai(R)R. Since the convexity is preserved under τR and the projection pi, if

piτR(CCM (R)) ̸= Ai(R)R, then it must be contained in a closed half-space, and

so must its closure. This contradicts the above fact (piτR(CCM (R)))− = Ai(R)R
resulted from the condition (iv). Hence piτR(CCM (R)) = Ai(R)R.

(i) =⇒ (iii). Remark that

piτR(CCM (R)) ⊃ piτR(Int(CCM (R)−)) ∋ pi([Spec(R)]) = 0
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if i < d. Since piτR is an open map, piτR(Int(CCM (R)−)) contains an open

neighbourhood of 0. Then, we have piτR(CCM (R)) = Ai(R)R since piτR(CCM (R))

is a cone in Ai(R)R.

Now, we shall prove (iii) =⇒ (i) in the case where R is F-finite of characteristic

p > 0 and R/m is algebraically closed.

Step 1 First we want to show τR
−1([Spec(R)]) ∈ CCM (R)−. We put τR([R]) =

cd + cd−1 + · · ·+ c0, where ci ∈ Ai(R)Q.

G0(R)R
τR−→ A∗(R)R = ⊕d

i=0Ai(R)R
[R] ←→ cd + cd−1 + · · ·+ c0

[R
1
pe ] ←→ pdecd + p(d−1)ecd−1 + · · ·+ p0ec0.

Therefore

1

pde
[R

1
pe ] = τR

−1

(
cd +

1

pe
cd−1 + · · ·+

1

pde
c0

)
∈ CCM (R).

Take the limit. Then, we have

τR
−1([Spec(R)]) = τR

−1(cd) = lim
e→∞

1

pde
[R

1
pe ] ∈ CCM (R)−.

Step 2 We shall show τR
−1([Spec(R)]) ∈ Int(CCM (R)−).

Assume that τR
−1([Spec(R)]) is in the boundary of the cone CCM (R)−. Then

[SpecR] is in the boundary of the image of the cone under τR. If ρ(R) = 1, then

it can never happen. Therefore we may assume that ρ(R) > 1. For any R-module

M ,

τR([M ]) = rankRM [Spec(R)] + (lower dimensional terms).

Therefore, τR(CCR(R)
−) ̸= A∗(R)R. Note that τR(CCM (R)−) is a convex cone

since τR is an R-linear map. Thus there exists a hyperplane through the origin

that contains the boundary possessing [Spec(R)]. Indeed such a hyperplane is a

supporting hyperplane of the cone τR(CCM (R)−); namely, there exists a vector

v normal to the hyperplane such that the inner product < v,u > is nonnegative

for every u in τR(CCR(R)
−). Let ξ be the projection of A∗(R)R onto the line

generated by v. Then

ξ : A∗(R)R −→ R

is a non-zero R-linear map with the properties

(2.5)

{
ξ([Spec(R)]) = 0,

ξτR(CCM (R)−) ⊂ R≥0.
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Since Ad(R)R = R[Spec(R)], we have ξ(Ad(R)R) = 0. Since ξ ̸= 0, we can

choose 0 ≤ j < d such that

(2.6)

{
ξ(Ai(R)R) = 0 for i = j + 1, j + 2, . . . , d,

ξ(Aj(R)R) ̸= 0.

Therefore, ξ(Aj(R)R) = R. Since pjτR(CCM (R)) = Aj(R)R by the condition (iii),

we have

R = ξpjτR(CCM (R)) =
∑

M :MCM

R≥0ξpjτR([M ]).

Therefore, there exists a maximal Cohen-Macaulay module N such that

(2.7) ξpjτR([N ]) < 0.

Set

τR([N ]) = sd + sd−1 + · · ·+ s0,

where si ∈ Ai(R)Q. By (2.7), we have

(2.8) ξ(sj) < 0.

Then,

τR([F
e(N)]) = pdesd + p(d−1)esd−1 + · · ·+ p0es0.

By the assumption (2.6), we have

ξτR([F
e(N)]) = pjeξ(sj) + p(j−1)eξ(sj−1) + · · ·+ p0eξ(s0).

Since (2.8), we know

ξτR([F
e(N)]) < 0

for a sufficiently large e. Since F e(N) is Cohen-Macaulay,

ξτR([F
e(N)]) ∈ ξτR(CCM (R)) ⊂ R≥0

by (2.5). It is a contradiction. □
For a positive integer ℓ, we define

ψℓ : A∗(R)R −→ A∗(R)R

to be

ψℓ(sd + sd−1 + · · ·+ s0) = ℓdsd + ℓd−1sd−1 + · · ·+ ℓ0s0,

where si ∈ Ai(R)R for i = 0, 1, . . . , d.

If there exists ℓ ≥ 2 such that

ψℓ (τR(CCM (R))) ⊂ τR(CCM (R)),

the conditions (i), (ii), (iii), (iv) in Theorem 2.12 are equivalent to each other

without assuming that R is of positive characteristic.
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If R is of characteristic prime p, then

ψp (τR(CCM (R))) ⊂ τR(CCM (R)).

Therefore, it is natural to ask the following for an arbitrary Cohen-Macaulay

local domain:

Question 2.13. Is there an integer ℓ ≥ 2 such that

ψℓ (τR(CCM (R))) ⊂ τR(CCM (R))?

3. Examples of various Hilbert-Kunz functions

In the rest of this paper, we shall prove Theorem 1.1 in the introduction.

We need the following lemma.

Lemma 3.1. Let d be a positive integer, and p be a prime number.

Then, there exists a ring A of characteristic p which satisfies the following con-

ditions:

• A is a d-dimensional F -finite Cohen-Macaulay normal local domain and

the residue class field of A is algebraically closed.

• Ai(A)Q = Ai(A)Q =

{
Q (d2 < i ≤ d)
0 (otherwise)

.

• There exists a maximal Cohen-Macaulay A-module M such that τA([A ⊕
M ]) ∈ Ad(A)Q; that is, A⊕M is an A-test module containing A as a direct

summand.

The above lemma will be proven in the next section. In this section, using

Lemma 3.1, we shall prove Theorem 1.1.

Let A be a ring satisfying three conditions in Lemma 3.1.

Step 1. We set

{i1, i2, . . . , it} = {i | ϵi ̸= 0}.

In Step 1, we shall show that there exists aik ∈ Aik(A)Q for k = 1, 2, . . . , t, and

a finite free A-complex F. of length d with support at the maximal ideal m such

that

ch(F.)(aik) ̸= 0

for all k = 1, 2, . . . , t.

Recall that ϵj = 0 if j ≤ d
2 . Then, by the assumption on the ring A, Aik(A)Q = Q

for k = 1, 2, . . . , t. By the definition of Ai(A)Q (see [16]), there exists aik ∈ Aik(A)Q
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and a finite free A-complex F(k). of length d with support at the maximal ideal m

such that

ch(F(k).)(aik) ̸= 0

for k = 1, 2, . . . , t. Here, we recall that, since A is a Cohen-Macaulay local ring,

the Grothendieck group of bounded finite A-free complexes with support in {m}
is generated by free resolutions of modules of finite length and of finite projective

dimesion (cf. Proposition 2 in [23]).

By induction, it is easy to show that there exist positive integers n1, n2, . . . , nt

such that

F. = F(1).
⊕n1 ⊕ F(2).

⊕n2 ⊕ · · · ⊕ F(t).
⊕nt

satisfies the required condition.

Step 2. Take the complex F. that we have constructed in Step 1.

In Step 2, we shall show that there exists a maximal Cohen-Macaulay A-module

N and positive rational numbers β0, β1, . . . , βd such that

ch(F.)(τA([A⊕N ])i) = ϵiβi

for i = 0, 1, . . . , d. Here, τA([A⊕N ])i is the element in Ai(A)Q such that τA([A⊕
N ]) =

∑d
i=0 τA([A⊕N ])i.

By the induction on j, we shall prove the following: There exists a maximal

Cohen-Macaulay A-module N and positive rational numbers βd−j , βd−j+1, . . . , βd

such that

ch(F.)(τA([A⊕N ])i) = ϵiβi

for i = d− j, d− j + 1, . . . , d.

Consider the case j = 0. Here, recall that F. is a bounded finite A-free complex

of length d with support in {m}. Set N = A. Then, τA([A ⊕ A])d = 2[Spec(A)]

and

ch(F.)([Spec(A)]) > 0

by a theorem of Roberts [21]. Here, recall that ϵd = 1. Therefore, N = A and

βd = ch(F.)(2[Spec(A)]) satisfy the required condition.

Next suppose 0 ≤ j < d. We assume that there exists a maximal Cohen-

Macaulay A-module N ′ and positive rational numbers β′d−j , β
′
d−j+1, . . . , β

′
d such

that

ch(F.)(τA([A⊕N ′])i) = ϵiβ
′
i

for i = d− j, d− j + 1, . . . , d.

Compare the rational number ch(F.)(τA([A⊕N ′])d−j−1) with ϵd−j−1.
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If there exists a positive rational number β′d−j−1 such that

ch(F.)(τA([A⊕N ′])d−j−1) = ϵd−j−1β
′
d−j−1,

we have nothing to prove. (Here, if d− j − 1 ≤ d
2 , both ch(F.)(τA([A⊕N ′])d−j−1)

and ϵd−j−1 are 0. Therefore, we have only to set β′d−j−1 = 1 in this case.)

We assume that there does not exist a positive rational number β′d−j−1 satisfying

the above condition.

(*) If ϵd−j−1 = 0, we set b = −τA([A ⊕ N ′])d−j−1. If ϵd−j−1 ̸= 0, we choose

b ∈ Ad−j−1(A)Q such that the sign of ch(F.)(b) is the same as that of

ϵd−j−1.

Here, remark that, by the construction of F. in Step 1, we can choose an element

b satisfying the above condition. We shall show the following claim:

Claim 3.2. There exists a maximal Cohen-Macaulay A-module L and a positive

integer n such that

τA([L]) = rankA(L)[Spec(A)] + nb+ (lower dimensional terms).

We prove this claim.

Since b ∈ Ad−j−1(A)Q and d − j − 1 < d, there exist (not necessary distinct)

prime ideals P1, . . . , Ps of height j + 1 such that

nb = [Spec(A/P1)] + · · ·+ [Spec(A/Ps)]

in Ad−j−1(A)Q for some positive integer n.

Consider the following exact sequence

0→ N1 → F2u−1 → · · · → F1 → F0 → A/P1 ⊕ · · · ⊕A/Ps → 0,

where F0, F1, . . . , F2u−1 are finitely generated A-free modules and u is a large

enough number such that N1 is a maximal Cohen-Macaulay A-module.

Then, we have

[N1] = [A/P1 ⊕ · · · ⊕A/Ps]− [F0] + [F1]− · · ·+ [F2u−1]

= [A/P1 ⊕ · · · ⊕A/Ps] + rankA(N1)[A]

in G0(A)Q.

By the assumption, there exists a maximal Cohen-Macaulay A-module M such

that τA([A⊕M ]) ∈ Ad(A)Q. Adding rankA(N1)[M ] to the both sides, we obtain

[N1] + rankA(N1)[M ] = [A/P1 ⊕ · · · ⊕A/Ps] + rankA(N1)[A⊕M ]

in G0(A)Q.
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Then, we have

τA([N1 ⊕M⊕rankA(N1)])

= rankA(N1 ⊕M⊕rankA(N1))[Spec(A)] + nb+ (lower dimensional terms)

since

τA([A/P1 ⊕ · · · ⊕A/Ps]) = nb+ (lower dimensional terms)

by the top term property (Theorem 18.3 (5) in [9]). Thus, N1 ⊕ M⊕rankA(N1)

satisfies the condition on L in Claim 3.2. We have completed the proof of Claim 3.2.

Here, we set

N = A⊕e−1 ⊕N ′⊕e ⊕ L⊕f .

for some positive integers e and f , and a maximal Cohen-Macaulay module L in

Claim 3.2. Then,

τA([A⊕N ])d = rankA(A⊕N)[Spec(A)] =
rankA(A⊕N)

rankA(A⊕N ′)
τA([A⊕N ′])d

and

τA([A⊕N ])i = eτA([A⊕N ′])i

for i = d− j, d− j + 1, . . . , d− 1. Therefore, we have

ch(F.)(τA([A⊕N ])d) = ϵdβd

where

βd =
rankA(A⊕N)

rankA(A⊕N ′)
β′d > 0,

and

ch(F.)(τA([A⊕N ])i) = ϵiβi

where

βi = eβ′i > 0

for i = d− j, d− j + 1, . . . , d− 1.

On the other hand, we have

τA([A⊕N ])d−j−1 = eτA([A⊕N ′])d−j−1 + fnb.

If ϵd−j−1 = 0, then we suppose e = fn. Then, τA([A ⊕ N ])d−j−1 = 0 by the

definition of b (see (*) above Claim 3.2). Thus, putting βd−j−1 = 1,

ch(F.)(τA([A⊕N ])d−j−1) = 0 = ϵd−j−1βd−j−1.

Next, assume that ϵd−j−1 ̸= 0. Consider the equality

ch(F.)(τA([A⊕N ])d−j−1) = e ch(F.)(τA([A⊕N ′])d−j−1) + fn ch(F.)(b).
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Assume that f/e is big enough. Then the sign of the right-hand-side is the same

as that of ϵd−j−1 by the definition of b (see (*) above Claim 3.2). Therefore, there

exists a positive rational number βd−j−1 such that

ch(F.)(τA([A⊕N ])d−j−1) = ϵd−j−1βd−j−1.

Step 3. Let F. and N be a complex and a maximal Cohen-Macaulay module as in

Step 2, respectively. Let R be the idealization A⋉N . Then, R is a d-dimensional

Cohen-Macaulay local ring.

Since ch(F.) is a bivariant class (Chapter 17 in [9]), we have the commutative

diagram

A∗(R/(m⋉mN))Q
ch(F.⊗AR)←− A∗(R)Q

↓ ↓

A∗(A/m)Q
ch(F.)←− A∗(A)Q

where the vertical maps are isomorphisms induced by finite morphisms Spec(R)→
Spec(A) and Spec(R/(m⋉mN))→ Spec(A/m). Then, we obtain

ch(F.⊗A R)(τR([R])i) = ch(F.)(τA([A⊕N ])i) = ϵiβi

for i = 0, 1, . . . , d. Since R is a Cohen-Macaulay local ring of dimension d, F.⊗AR

is a finite free resolution of an R-module Q of finite length by [23]. Let C be the

category of R-modules of finite length and finite projective dimension.

Then, by Kumar’s method (cf. Lemma 9.10 in [26]), there exist maximal primary

ideals I1, . . . , Iℓ, I of R of finite projective dimension such that

• Ii is an ideal generated by a maximal regular sequence of R for i = 1, . . . , ℓ.

• [Q] +
∑ℓ

i=1[R/Ii] = [R/I] in K0(C).

Let F : R→ R be the Frobenius map. It is a finite morphism since A is F -finite.

We denote by FnR the R-module R whose R-module structure is given by

r × a := rp
n
a

for r ∈ R and a ∈ FnR.

By the Riemann-Roch formula,

τR([FnR]) =
d∑

i=0

pinτR([R])i.
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By the local Riemann-Roch formula, we have

χF.⊗AR(FnR) = ch(F.⊗A R)(

d∑
i=0

τR([FnR])i)

= ch(F.⊗A R)(

d∑
i=0

pinτR([R])i)

=

d∑
i=0

ch(F.⊗A R)(τR([R])i)p
in

=
d∑

i=0

ϵiβip
in.

On the other hand, we have

χF.⊗AR(FnR) = χ(Q, FnR)

= χ(R/I, FnR)−
ℓ∑

i=1

χ(R/Ii, FnR)

= ℓR(R/I
[pn])−

ℓ∑
i=1

ℓR(R/I
[pn]
i )

since FnR is a Cohen-Macaulay R-module and the residue class field of R is alge-

braically closed.

We set Ii = (ai1, . . . , aid), where ai1, . . . , aid forms a maximal R-regular se-

quence. Then,

ℓR(R/I
[pn]
i ) = ℓR(R/(a

pn

i1 , . . . , a
pn

id )) = pdnℓR(R/(ai1, . . . , aid)).

Thus, we have

ℓR(R/I
[pn]) =

(
ϵdβd +

ℓ∑
i=1

ℓR(R/(ai1, . . . , aid))

)
pdn +

d−1∑
i=0

ϵiβip
in.

Remark that

ϵdβd +
ℓ∑

i=1

ℓR(R/(ai1, . . . , aid)) = eHK(I) > 0.

Putting α = eHK(I), we know that I satisfies the required condition. We have

completed the proof of Theorem 1.1.

In Theorem 1.1, the coefficients of the polynomial are assumed to be zero in

the terms of degree d/2 or lower. This assumption is made due to the fact that

Ai(R)Q = 0 for i ≤ d/2 (for a homogeneous coordinate ring R of a smooth
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projective variety) if the Grothendieck’s standard conjecture holds (c.f. [16, Re-

mark 7.12]). There is no known example where Ai(R)Q does not vanish for some

i ≤ d/2.
Therefore, it is natural to ask the following:

Conjecture 3.3. Let R be a d-dimensional Cohen-Macaulay local ring of charac-

teristic p with perfect residue class field. Let I be an maximal primary ideal of R

of finite projective dimension. We set

ℓR(R/I
[pn]) =

d∑
i=0

βip
in

for n > 0. Then, if i ≤ d/2, βi = 0.

4. Proof of Lemma 3.1

This section is devoted to proving Lemma 3.1.

We use the following basic properties on singular Riemann-Roch maps.

Fact 4.1. Let X be a d-dimensional projective variety over k. Then, we have an

isomorphism

G0(X)Q
τX−→ A∗(X)Q.

LetM be a coherent OX-module. Put

τX([M]) = sd + sd−1 + · · ·+ s0,

where si ∈ Ai(X)Q.

Let D be a very ample divisor on X. Put S = k[x0, x1, . . . , xn], where S is a

graded polynomial ring with deg(xi) = 1 for i = 0, 1, . . . , n. Let

X = Proj(B)
i
↪→ Pn = Proj(S)

be the embedding corresponding to D, where we have

S ↠ B = k[B1] ⊂
⊕
m

H0(X,OX(mD)).

Here, B1 denotes the homogeneous component of the graded ring B of degree 1. We

note that B is standard graded; that is, B is a graded ring generated by elements

of degree 1 over B0 = k.

(1) We have a commutative diagram:

G0(X)Q
τX−→ A∗(X)Q

i∗ ↓ ↓ i∗
G0(Pn)Q

τPn−→ A∗(Pn)Q
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Put

M =
⊕
m

H0(X,M⊗OX
OX(mD)).

Then, M is a graded
⊕

mH
0(X,OX(mD))-module. We have

τPn([M̃ ]) = τPni∗([M]) = i∗τX([M]) = i∗(sd) + i∗(sd−1) + · · ·+ i∗(s0).

Put

Hi = Proj(S/(xi+1, . . . , xn)).

Then, we have

Ai(Pn)Q = Q[Hi]

for i = 0, 1, . . . , n. Let ℓi be a rational number such that

i∗(si) = ℓi[Hi]

for i = 0, 1, . . . , d. Then, we have

PM (t) = dimkMt =
ℓd
d!
td +

ℓd−1

(d− 1)!
td−1 + · · ·+ ℓ0

0!
t0

for t ≫ 0. (See Proposition in p3005 in Chan-Miller [4], Proposition 4.1

in Roberts-Singh [24])

(2) Let m be the homogeneous maximal ideal of B. We have the following

commutative diagram:

G0(X)Q
τX−→ A∗(X)Q

α ↓ ↓ β
G0(B)Q

τB−→ A∗(B)Q

γ ↓ ↓ δ
G0(Bm)Q

τBm−→ A∗(Bm)Q

The horizontal maps are isomorphisms. Here, γ and δ are isomorphisms

induced by localization B → Bm. For a graded B-module M , we have

α([M̃ ]) = [M ].

Here, we remark that α is well-defined since [T ] = 0 in G0(B)Q for a graded

B-module T whose homogeneous graded pieces are zero except for finitely

many degrees. The map β is the sum of the maps

Ai(X)Q
β
↠ Ai(X)Q

c1(D)Ai+1(X)Q
= Ai+1(B)Q,

where this map is given by

[Proj(B/P )] 7→ [Spec(B/P )]

for each homogeneous prime ideal P with dimB/P > 0.
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Thus, we obtain

τBm([M ⊗B Bm]) = δβ(sd) + δβ(sd−1) + · · ·+ δβ(s0),

where δβ(si) ∈ Ai+1(Bm)Q. We refer the reader to section 4 in [13] for

maps α, β, γ, δ.

Example 4.2. Set X = Pm×Pn. Let p1 and p2 be the first and second projections,

respectively. Assume m ≥ n ≥ 2.

Then, we have

G0(X)Q
τX−→ A∗(X)Q = Q[a, b]/(am+1, bn+1),

where

Am+n−c(X)Q =
⊕
i+j=c

Qaibj ,

and a = c1(p
∗
1OPm(1)) ∈ Am+n−1(X) and b = c1(p

∗
2OPn(1)) ∈ Am+n−1(X). We

put

OX(s, t) = p∗1OPm(s)⊗OX
p∗2OPn(t).

Put

f(x) =
x

1− e−x
.

Then, we have

τX([OX(s, t)]) = ch(p∗1OPm(s))ch(p∗2OPn(t))td(Ω∨
X)

= ch(p∗1OPm(s))ch(p∗2OPn(t))td(p∗1Ω
∨
Pm)td(p∗2Ω

∨
Pn)

= esaf(a)m+1etbf(b)n+1.

Here, take a very ample divisor a + b ∈ Am+n−1(X). Then, the homogeneous

coordinate ring B is defined by all the 2-minors of the generic (m+ 1)× (n+ 1)-

matrix. In this case, the cycle in X corresponding to aibj is the closed subscheme

defined by the ideal generated by the entries in the top i rows and the left j columns.

Then, we have

G0(B)Q
τB−→ A∗(B)Q = Q[a, b]/(am+1, bn+1, a+ b) = Q[b]/(bn+1),

where we identify a with −b. Let P (resp. Q) be the ideals generated by the elements

in the first row (resp. the first colummn). Then, for s > 0 and t > 0,

[P (s)] = [P s] = α([OX(−s, 0)])

[Q(t)] = [Qt] = α([OX(0,−t)]).
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Here, for an ideal I, I(s) denotes the s-th symbolic power of I. Then,

τB([P
(s)]) = esbf(−b)m+1f(b)n+1 = f(−b)m+1−sf(b)n+1+s ∈ Q[b]/(bn+1)

τB([Q
(t)]) = f(−b)m+1e−tbf(b)n+1 = f(−b)m+1+tf(b)n+1−t ∈ Q[b]/(bn+1),

since eb = f(b)/f(−b). Here,

{P (m), P (m−1), . . . , P (1), B,Q(1), . . . , Q(n−1), Q(n)}

is the set of rank one maximal Cohen-Macaulay modules. It is easily verified calcu-

lating local cohomology modules of Segre products [10]. If there exists non-negative

integers q0, q1, . . . , qm+n satisfying

m+n∑
k=0

qk > 0 and

m+n∑
k=0

qkf(−b)1+kf(b)m+n+1−k = (
m+n∑
k=0

qk) + bn+1(· · · ),

then

(P (m))⊕q0 ⊕ · · · ⊕ (P (1))⊕qm−1 ⊕B⊕qm ⊕ (Q(1))⊕qm+1 ⊕ · · · ⊕ (Q(n))⊕qm+n

is a B-test module. If qm > 0, then it contains B as a direct summand.

The authors do not know whether a test module (having B as a direct summand)

exists or not in this case.

In order to prove Lemma 3.1, it is enough to show the following Claim.

Claim 4.3. Let d be a positive integer and p a prime number. Let k be an alge-

braically closed field of characteristic p. If d is even, then we put

S = k[x0, x1, . . . , xd/2] and T = k[y0, y1, . . . , y(d/2)−1].

If d is odd, then we put

S = k[x0, x1, . . . , x(d−1)/2] and T = k[y0, y1, . . . , y(d−1)/2].

We think that S and T are graded rings with deg(xi) = deg(yj) = 1 for each i and

j. Let ℓ be a sufficiently large integer. We denote by S#T (ℓ) be the Segre product

of S and T (ℓ), that is, S#T (ℓ) = ⊕m≥0(S#T
(ℓ))m with (S#T (ℓ))m = Sm ⊗k Tmℓ

(see [10]).1 Let A be the localization of S#T (ℓ) at the homogeneous maximal ideal.

Then, the ring A satisfies the following conditions:

1For a graded ring T , T (ℓ) denotes the ℓ-th Veronese subring of T . Please do not confuse it

with the symbolic power of ideals as in Example 4.2.
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(1) The ring A is a d-dimensional F -finite Cohen-Macaulay normal local do-

main and the residue class field of A is algebraically closed.

(2) Ai(A)Q = Ai(A)Q =

{
Q (d2 < i ≤ d),
0 (otherwise).

(3) There exists a maximal Cohen-Macaulay A-module M such that τA([A ⊕
M ]) ∈ Ad(A)Q.

If d is even, then we set m = d/2 and n = d/2 − 1. If d is odd, then we set

m = n = (d−1)/2. Let ℓ be a positive integer. Then, a+ℓb is a very ample divisor

on X = Pm × Pn. Put B = S#T (ℓ).

Calculating local cohomologies of Segre products (see [10]), (1) will be easily

proved.

(2) will be proved by the method due to Roberts-Srinivas [23]. In fact, the

rational equivalence on cycles on X = Pm × Pn coincides with the numerical

equivalence. Put A = Bm. Then, by Theorem 7.7 in [16], we have isomorphisms

A∗(B)Q ≃ A∗(A)Q ≃ A∗(A)Q.

We know

Ai(B)Q =

{
Q (d/2 < i ≤ d),
0 (otherwise)

by [13].

In the rest, using Theorem 2.12, we shall prove (3). We shall prove that

(4.1) piτA(CCM (A)) = Ai(A)R for d/2 < i < d.

Here, we define

Nq =
⊕
s∈Z

H0(X,OX(q + s, ℓs)).

and prove the following lemma:

Lemma 4.4. For any ℓ > 0, Nq is a maximal Cohen-Macaulay B-module if −m ≤
q ≤ 0.

Proof. We have

Nq = S(q)#T (ℓ).

Let m1 (resp. m2) be the homogeneous maximal ideal of S (resp. T (ℓ)).

Then, H i
m1

(S(q))s ̸= 0 if and only if

i = 0 and s ≥ −q

or

i = m+ 1 and s ≤ −q −m− 1.
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Further, H i
m2

(T (ℓ))s ̸= 0 if and only if

i = 0 and s ≥ 0

or

i = n+ 1 and s ≤ −⌈n+1
ℓ ⌉.

Here ⌈n+1
ℓ ⌉ denotes the minimal integer which is bigger than or equal to n+1

ℓ . We

refer the reader to [10] for local cohomologies of Segre products. Therefore, Nq is

a maximal Cohen-Macaulay module if and only if{
−⌈n+1

ℓ ⌉ < −q
−q −m− 1 < 0.

It is equivalent to

−m− 1 < q < ⌈n+ 1

ℓ
⌉.

Therefore, if −m ≤ q ≤ 0, then Nq is a maximal Cohen-Macaulay module. □
We set

hm,q(x) = (x+ q +m)(x+ q +m− 1) · · · (x+ q + 1).

Consider the polynomials

hm,0(x) = (x+m)(x+m− 1) · · · (x+ 2)(x+ 1),

hm,−1(x) = (x+m− 1)(x+m− 2) · · · (x+ 1)x,

hm,−2(x) = (x+m− 2)(x+m− 3) · · ·x(x− 1),

...

hm,q(x) = (x+m+ q)(x+m+ q − 1) · · · (x+ 1 + q),

...

hm,−m(x) = x(x− 1)(x− 2) · · · (x− (m− 1)).

The following lemma will be used later.

Lemma 4.5. Suppose m ≥ 2 and m > u > 0. The set of the coefficients of xu in

hm,−1(x), hm,−2(x), . . . , hm,−m(x)

contains a negative value.

Proof. We shall prove it by induction on m.

Suppose m = 2. Then,

h2,−1(x) = (x+ 1)x = x2 + x,

h2,−2(x) = x(x− 1) = x2 − x.
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Assume that m ≥ 2 and the assertion is true for m.

Suppose 1 < u < m+ 1. By the induction hypothesis, there exists −m ≤ q < 0

such that the coefficient of xu−1 in hm,q(x) is negative. If the coefficient of xu in

hm,q(x) is negative, the coefficient of xu in

hm+1,q(x) = (x+ q +m+ 1)hm,q(x)

is negative. If the coefficient of xu in hm,q(x) is non-negative, the coefficient of xu

in

hm+1,q−1(x) = hm,q(x)(x+ q)

is negative.

Suppose u = 1. By the induction hypothesis, there exists −m ≤ q < 0 such

that the coefficient of x in hm,q(x) is negative. Remark that hm,q(0) = 0. Then,

the coefficient of x in

hm+1,q(x) = (x+ q +m+ 1)hm,q(x)

is negative. □
Consider

τX(OX(q, 0)) = eqaf(a)m+1f(b)n+1 ∈ A∗(X)Q = Q[a, b]/(am+1, bn+1).

Lemma 4.6. Suppose that v is an integer such that 1 ≤ v ≤ n.
(1) Assume v < m. Then, the set of the coefficients of av in

τX(OX(−m, 0)), τX(OX(−m+ 1, 0)), . . . , τX(OX(0, 0))

contains a positive value and a negative value.

(2) Assume v = m = n. Then, the coefficient of am in τX(OX(0, 0)) is positive.

The coefficient of am in τX(OX(−1, 0)) is zero. The coefficient of am−1b

in τX(OX(−1, 0)) is positive.

Proof. The coefficient of av in

eqaf(a)m+1f(b)n+1

is equal to the coefficient of av in

eqaf(a)m+1.

Since

τPm([OPm(q)]) = eqaf(a)m+1 ∈ Q[a]/(am+1),

the coefficient of av in

eqaf(a)m+1
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is equal to

(4.2) (m− v)!
{
the coefficient of xm−v in the polynomial

(
x+q+m

m

)}
by Fact 4.1 (1). Furthermore, (4.2) is equal to

(m− v)!
m!

{the coefficient of xm−v in the polynomial hm,q(x)} .

It is easy to see that, for 0 < u < m, the coefficient of xu in hm,0(x) is positive.

Therefore, Lemma 4.6 (1) immediately follows from Lemma 4.5.

Assume that v = m = n. Since the constant term of hm,0(x) is positive, the

coefficient of am in

f(a)m+1f(b)m+1

is positive. Since the constant term of hm,−1(x) is zero, the coefficient of am in

e−af(a)m+1f(b)m+1

is zero. The coefficient of am−1b in

e−af(a)m+1f(b)m+1

is equal to {
the coefficient of am−1 in e−af(a)m+1

}
×
(
m+ 1

2

)
,

where m+1
2 is the coefficient of b in f(b)m+1. The sign of the coefficient of am−1

in e−af(a)m+1 is the same as the sign of the coefficient of x in hm,−1(x), that is

obviously positive. □
We return to the proof of Claim 4.3 (3) and take an ample divisor a + ℓb on

X = Pm×Pn for ℓ > 0. Remark that S#T (ℓ) is a homogeneous coordinate ring of

X under the embedding corresponding to a+ℓb. We denote this ring simply by B.

Then the commutative diagram from Fact 4.1(2) with the current X is precisely

G0(X)Q
τX−→ A∗(X)Q = Q[a, b]/(am+1, bn+1)

α ↓ ↓ β
G0(B)Q

τB−→ A∗(B)Q = Q[a, b]/(am+1, bn+1, a+ ℓb) = Q[b]/(bn+1)

where β(a) = −ℓb.
Recall that

N0, N−1, . . . , N−m

are graded Cohen-Macaulay B-modules. Since Ai(A)R = R, in order to show (4.1),

it is enough to prove that, for v = 1, 2, . . . , n, the set of the coefficients of bv in

τB([N0]), τB([N−1]), . . . , τB([N−m])
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contains a positive value and a negative value. Note that

τB([Nq]) = τBα(OX(q, 0)) = βτX(OX(q, 0)) = β
(
eqaf(a)m+1f(b)n+1

)
.

Here recall that the map

β : Q[a, b]/(am+1, bn+1) −→ Q[b]/(bn+1)

is given by β(asbt) = (−1)sℓsbs+t. Thus, we have

β(
∑
s,t≥0

qsta
sbt) =

∑
s,t≥0

(−1)sqstℓsbs+t =

n∑
v=0

(

v∑
s=0

(−1)sqs,v−sℓ
s)bv.

If (−1)vqv0 > 0 (resp. (−1)vqv0 < 0), the coefficient of bv in the above is positive

(resp. negative) for ℓ≫ 0.

First suppose 1 ≤ v ≤ n and v < m. By Lemma 4.6 (1), the set of coefficients

of bv in

β
(
f(a)m+1f(b)n+1

)
, β
(
e−af(a)m+1f(b)n+1

)
, . . . , β

(
e−maf(a)m+1f(b)n+1

)
contains a positive value and a negative value for ℓ≫ 0.

Next suppose v = m = n. By Lemma 4.6 (2), the sign of the coefficients of bm

in

β
(
f(a)m+1f(b)m+1

)
and β

(
e−af(a)m+1f(b)m+1

)
are different for ℓ≫ 0. We have complete the proof of Claim 4.3.
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