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Abstract

In this paper, we shall prove that Gorenstein isolated quotient
singularities of odd prime dimension are cyclic. In the case where the
dimension is bigger than 1 and is not an odd prime number, then there
exist Gorenstein isolated non-cyclic quotient singularities.
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1 Introduction

Let G be a finite subgroup of GL(n,C), where C is the field of complex
numbers and let GL(n,C) be the set of n×n invertible matrices with
entries in C. Then, G acts on a polynomial ringR = C[X1, X2, . . . , Xn]
linearly. Let RG be the invariant subring, i.e.,

RG = {r ∈ R | g(r) = r ∀g ∈ G}.

It is well-known that RG is finitely generated over C (cf. Theorem 1.3.1
in [1]).

It is possible to classify finite subgroups in SL(2,C) (cf. Theo-
rem 2.4.5 in [5]). Here, SL(n,C) is the subgroup of GL(n,C) consisting
of all matrices of determinant 1. It is well-known that the invariant
subring of C[X1, X2] under the linear action of a finite subgroup of
SL(2,C) is a hypersurface in C3 with isolated singularity.

It is also possible to classify finite subgroups in SL(3,C) (cf. Yau-
Yu [7]). Using the classification, it was proven that Gorenstein isolated
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quotient singularities of dimension three are cyclic (Theorem A and
Theorem 23 in Yau-Yu [7]).

The purpose of this paper is to prove the following theorem:

Theorem 1.1 Let n be an odd prime number. Let G be a finite
subgroup of GL(n,C) which contains no pseudo-reflection. Assume
that the invariant subring RG is Gorenstein with isolated singularity.
Then, RG has a cyclic quotient singularity.

For a finite subgroup G of GL(n,C), we set

Σi = {g ∈ G | 1 is an eigenvalue of g with multiplicity at least i}

for i = 0, 1, . . . , n. Each element in Σn−1\{e} is called a pseudo-
reflection. Set

Hi = <Σi>,

which is the subgroup of G generated by Σi. By definition we have

G = Σ0 ⊃ Σ1 ⊃ · · · ⊃ Σn−1 ⊃ Σn = {e} and
G = H0 ⊃ H1 ⊃ · · · ⊃ Hn−1 ⊃ Hn = {e}.

Here, remark that Σn is equal to {e}, since any matrix in G is di-
agonalizable. These are very important subgroups, because the ring
homomorphism RG → RHl is étale in codimension s if and only if
l ≤ n− s.

Suppose n ≥ 2. Let l be an integer such that 0 ≤ l ≤ n − 2. By
purity of branch locus (cf. Theorem 41.1 in [2]) and the Shephard-
Todd theorem (cf. Theorem 7.2.1 in [1]), we know that the following
two conditions are equivalent:

(1) Hl % Hl+1 = · · · = Hn−1,

(2) SingRG 6= ø and dim SingRG = l.

Here SingRG is the singular locus of RG, i.e.,

SingRG = {P ∈ SpecRG | (RG)P is not a regular local ring}.

If SingA is not empty and if the dimension of SingA is 0, we say that
A has isolated singularities. Thus, the following two conditions are
equivalent:

(1) RG has isolated singularities.

(2) H0 % H1 = · · · = Hn−1．
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If Σn−1 = {e}, then the above two conditions are equivalent to the
following:

(3) Σ1 = {e}, i.e., 1 is not an eigenvalue of any matrix in G except
for e.

On the other hand, remember the following theorem due to Watan-
abe [4]:

Theorem 1.2 (Watanabe) Let G be a finite subgroup of GL(n,C)
and suppose that G acts on R := C[X1, X2, . . . , Xn] linearly.

• If G ⊂ SL(n,K), then RG is a Gorenstein ring.

• If RG is a Gorenstein ring and if Σn−1 = {e}, then G ⊂ SL(n,K).

Since RHn−1 is isomorphic to a polynomial ring and G/Hn−1 acts
on RHn−1 linearly, the case where Σn−1 = {e} is very important.

By these arguments, if Σn−1 = {e}, we have the following asser-
tions:

• G ⊂ SL(n,K) if and only if RG is Gorenstein.

• RG has isolated singularities if and only if 1 is not an eigenvalue
of any matrix in G except for e.

Thus Theorem 1.1 immediately follows from Lemma 1.3 below.

Lemma 1.3 Let n be an odd prime number. Let G be a finite subgroup
of SL(n,K), where K is a field such that the characteristic of K is 0
or does not divide the order of G. Assume that 1 is not an eigenvalue
of any matrix in G except for the unit matrix. Then, G is a cyclic
group.

We remark that the pair (G, ρ) of a finite group G and its irre-
ducible fixed point free complex representation ρ are classified, where
fixed point free means that ρ(s) does not have 1 as its eigenvalue
for s 6= e. This classification is obtained in Theorem 7.2.18 in [6].
Therefore, Lemma 1.3 follows from the classification.

In this paper, we give a very simple and elementary proof to
Lemma 1.3.

We shall prove Lemma 1.3 in Section 2. In Section 3, we shall give
examples of non-cyclic subgroups in the case where n is bigger than 1
and is not an odd prime integer.
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2 Proof of Lemma 1.3

We shall prove Lemma 1.3 in this section.
We may assume that K is an algebraically closed field.
Remark that each matrix in G is diagonalizable because the char-

acteristic of K is 0 or does not divide the order of G.
First we shall prove Lemma 1.3 in the case where G is an abelian

group. Next we shall do in the case where G is a solvable group.
Finally we prove Lemma 1.3 without any additional assumptions.

2.1 The case where G is abelian

In this subsection, we prove Lemma 1.3 in the case where G is an
abelian group.

Assume that G is a finite abelian subgroup of SL(n,K)．
Since the characteristic of K is 0 or does not divide the order of

G, there exists c ∈ GL(n,K) such that c−1gc is a diagonal matrix
for any g ∈ G. Set c−1Gc := {c−1gc|g ∈ G}. Remember that g and
c−1gc have the same characteristic polynomial. So, g and c−1gc have
the same determinant and the same eigenvalues. Replacing G with
c−1Gc, we may assume that all matrices in G are diagonal.

We define
ψ : G −→ K×

by letting ψ(g) be the (1, 1)th entry of each diagonal matrix g in G.
Then, it is a group homomorphism. Since 1 is not an eigenvalue of
any matrix in G except for the unit matrix, ψ is injective.

Since any finite subgroup of K× is cyclic, so is G.

2.2 The case where G is solvable

In this subsection, we prove Lemma 1.3 in the case where G is a
solvable group by induction on #G (the order of G).

Let G be a finite solvable subgroup of SL(n,K) satisfying the as-
sumption in Lemma 1.3．Assume #G > 1. By induction, any fi-
nite solvable subgroup G′ of SL(n,K) satisfying the assumption in
Lemma 1.3 is cyclic if #G > #G′. In particular, any proper subgroup
of G is cyclic.

Let H be a maximal subgroup of G that contains the commutator
subgroup of G. We remark that such a subgroup exists since G is
solvable. Then H is a normal subgroup of G. Since H is a proper
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subgroup of G, H is a cyclic group. Let a be a generator of H, and
take b ∈ G \H. Then,

H = <a> and G = <a, b>,

where <a1, . . . , at> means the subgroup generated by a1, . . . , at.
Let s be the order of a. Since H is a normal subgroup of G, b−1ab

is in H. There exists u ∈ (Z/sZ)× such that b−1ab = au.
Let {λ1, λ2, . . . , λn} be the set of the eigenvalues of a, where each

λi is a primitive sth root of 1. We regard it as a multi-set.
Then, by a famous theorem due to Frobenius, {λu

1 , λ
u
2 , . . . , λ

u
n} is

the set of eigenvalues of au.
Since b−1ab = au,

{λ1, λ2, . . . , λn} = {λu
1 , λ

u
2 , . . . , λ

u
n}

is satisfied as a multi-set. Repeating it, we have

{λ1, λ2, . . . , λn} = {λ(um)
1 , λ

(um)
2 , . . . , λ(um)

n } (1)

as a multi-set for any positive integer m. Let ord(u) be the order of
u in the multiplicative group (Z/sZ)×. Then, for any i,{

λi, λ
u
i , λ

(u2)
i , . . . , λ

(uord(u)−1)
i

}
(2)

is a subset of mutually distinct eigenvalues of the matrix a. By (1), we
know that eigenvalues in (2) have the same multiplicity. Therefore, it
is easy to see that ord(u) divides n. Since n is a prime number, ord(u)
is equal to 1 or n.

(i) If u = 1, then G is abelian since ab = ba. In this case, G is cyclic
as we have already seen in Subsection 2.1.

(ii) Suppose ord(u) = n. Then, we may assume that

{λ, λu, λ(u2), . . . , λ(un−1)}

is the set of eigenvalues of a, where λ is a primitive sth root of
1. Here, remark that the multiplicity of each eigenvalue is one.
Then there exists c ∈ GL(n,K) such that

c−1ac =


λ O

λu

λ(u2)

. . .
O λ(un−1)

 . (3)
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Replacing G with c−1Gc, we may assume that a is equal to the
right-hand-side of (3). Then,

b−1ab = au =


λu O

λ(u2)

. . .
λ(un−1)

O λ

 .

By the above equality, the matrix b coincides with

(b1 b2 · · · bn−1 b0),

where bi is an eigenvector of a of eigenvalue λ(ui) for i = 0, 1, . . . , n−
1. Therefore, we may assume that the matrix b is of the following
form: 

0 · · · · · · 0 b0
b1 0 · · · · · · 0

0 b2
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 bn−1 0


Then,

det(b) = (−1)n−1b0b1 · · · bn−1 = 1.

On the other hand,

det(te− b)

= det



t 0 · · · 0 −b0
−b1 t

. . . . . . 0

0 −b2 t
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −bn−1 t



= det



t 0 · · · · · · 0

−b1 t 0 · · ·
...

0 −b2 t
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −bn−1 t


+ det



0 0 · · · · · · −b0
−b1 t 0 · · ·

...

0 −b2 t
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −bn−1 t


= tn + (−1)n+(n−1)b0b1 · · · bn−1

= tn + (−1)n.

6



Since n is an odd number, we know that 1 is an eigenvalue of
the matrix b. It is a contradiction. Therefore, ord(u) is not n.

We have completed a proof in the case where G is solvable.

2.3 Final step in our proof of Lemma 1.3

In this subsection, we prove Lemma 1.3 without any additional as-
sumptions.

Let G be a group satisfying the assumption of Lemma 1.3. We
prove Lemma 1.3 by induction on #G. By induction, any proper
subgroup of G is cyclic. Let Sp be a p-Sylow subgroup of G for each
prime number p.

First, assume that Sp is a normal subgroup of G for any prime
number p. Then it is well known that G is isomorphic to the direct
product of all Sylow subgroups. Therefore, in this case, G is solvable.
Thus, G is cyclic as we have already seen in Subsection 2.2.

Next, we assume that there exists a prime number p such that Sp

is not a normal subgroup of G. The following subgroup is called the
normalizer of Sp.

NG(Sp) = {c ∈ G | cSpc
−1 = Sp}

Since Sp is not a normal subgroup of G, G 6= NG(Sp).
Remember the following famous theorem due to Burnside (cf. The-

orem 7.50 in [3]):

Theorem 2.1 (Burnside) Let F be a finite group. Assume that
there exists a prime number q such that a q-Sylow subgroup Sq of
F is contained in the center of its normalizer NF (Sq).

Then there exists a normal subgroup H of F such that

F = HSq and H ∩ Sq = {e}.

In our case, Sp is contained in the center ofNG(Sp) becauseNG(Sp)
is cyclic. By the above theorem due to Burnside, there exists a normal
subgroup H of G such that

G = HSp and H ∩ Sp = {e}.

Since Sp 6= {e}, H is a proper subgroup of G. Therefore, H is cyclic.
Since Sp is a proper subgroup of G, Sp is also cyclic. Then, G is
solvable because of

G/H ' Sp.
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Since G is solvable, it is a cyclic group as we have already seen in
Subsection 2.2.

We have completed a proof of Lemma 1.3.

3 The case where n is not an odd prime

number

Suppose that n is an integer bigger than 1.
In this section, we give examples of non-abelian finite subgroups

of SL(n,C) that satisfy the assumption in Lemma 1.3 except for that
n is an odd prime number.

These examples are of type I of Theorem 6.1.11 and the represen-
tations are given in Theorem 5.5.6 in [6].

3.1 The case where n is an even number

In this subsection, we assume that n is an even number.
Let H be a non-abelian finite subgroup of SL(2,C). For example,

H = <A,B >, where

A =
(
i 0
0 −i

)
, B =

(
0 i
i 0

)
.

It is easy to see that 1 is not an eigenvalue of any matrix in H except
for e.

Here we define as

G =




M 0 · · · · · · 0
0 M 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 · · · · · · 0 M

 ∈ SL(n,C)

∣∣∣∣∣∣∣∣∣∣∣∣
M ∈ H


.

Then 1 is not an eigenvalue of any matrix in G except for e. Since G
is isomorphic to H as a group, G is not abelian.

3.2 The case where n is an odd composite num-
ber

In this subsection, assume that n is an odd composite number.
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Set
n = qn′, (4)

where q is an odd prime number and n′ is an odd number such that
q ≤ n′.

By a famous theorem due to Dirichlet, there exists an odd prime
number l such that

l ≡ 1 (mod 2q).

Then, there exists α ∈ (Z/lZ)× such that the order of α is q, i.e., it
satisfies

αq ≡ 1 (mod l) and α 6≡ 1 (mod l). (5)

Let z (resp. x) be a primitive lth root (resp. qth root) of 1.
Here, set

A =


O x

1 O
. . . O

O 1

 , B =


z O

zα

. . .
O z(αq−1)

 ∈ GL(q,C).

Lemma 3.1 Set G = <A,B > ⊂ GL(q,C). Then we have the fol-
lowing:

(i) detA = x, detB = 1.

(ii) AB 6= BA. In particular, G is not abelian.

(iii) G is a finite group.

(iv) 1 is not an eigenvalue of any matrix in G except for the unit
matrix.

Proof. We have

detA = (−1)q−1x = x

detB =
q−1∏
i=0

z(αi) = z
αq−1
α−1 .

Since l divides αq−1
α−1 by (5),

z
αq−1
α−1 = 1.
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The assertion (i) has been proven.

A−1BA =


1 O

O
. . .

O 1
x−1 O




z O
zα

. . .
O z(αq−1)




O x

1 O
. . . O

O 1



=


zα O

z(α2)

. . .
z(αq−1)

O z

 = Bα

Since z 6= zα, we have AB 6= BA. The assertion (ii) has been proven.
It is easy to see that the order of B is l. Since

Aq =

 x O
. . .

O x

 ,

the order of A is q2. Since BA = ABα, we have

G = {ArBs|r = 0, 1, . . . , q2 − 1; s = 0, 1, . . . , l − 1}.

In particular, the order of G is finite. The assertion (iii) has been
proven.

Now, we shall show that 1 is not an eigenvalue of ArBs for r =
0, 1, . . . , q2 − 1, s = 0, 1, . . . , l − 1 except for the case r = s = 0.

Set

r = uq + v,

where u and v are integers such that 0 ≤ u, v < q.
First, assume v = 0. Since

ArBs = xu


zs O

zsα

. . .
O zsαq−1

 =


xuzs O

xuzsα

. . .
O xuzsαq−1

 ,
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{xuzs, xuzsα, . . . , xuzsαq−1} is the set of the eigenvalues of ArBs.
Here assume that xuzsαt

= 1 for some 0 ≤ t ≤ q − 1. Since q and l
are relatively prime, we have

u ≡ 0 (mod q)
sαt ≡ 0 (mod l).

Therefore, we have r = s = 0.
Next assume v 6= 0.

ArBs = (Aq)uAvBs

=

q−v︷ ︸︸ ︷ v︷ ︸︸ ︷

xu+1 0

O
. . .

0 xu+1

xu 0
. . . O

0 xu




zs O

zsα

. . .
O zsαq−1



=



xu+1zsαq−v
O

O
. . .

O xu+1zsαq−1

xuzs O
. . . O

O xuzsαq−v−1


.

Therefore, we know that

the (i, j)th entry of tE −ArBs =


t (i = j)
−xuzsαj−1

(i = j + v)
−xu+1zsαj−1

(i = j + v − q)
0 (otherwise).

For each j, the (i, j)th entry of tE−ArBs is not 0 if and only if i = j
or i ≡ j + v (mod q). Since q and v are relatively prime, we have

det(tE −ArBs) = tq + (−1)q+v(q−v)xuq+vzs(1+α+···+αq−1)

= tq − xv.

Since xv 6= 1, 1 is not an eigenvalue of ArBs. Q.E.D.
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We define a group homomorphism

f : G −→ GL(qn′,C)

by
q+n′

2︷ ︸︸ ︷

f(C) =



C O
. . . O

O C

C O

O
. . .

O C


︸ ︷︷ ︸

n′−q
2

for each C ∈ G, where C is the complex conjugate matrix of C. Here,
remember that n′ is an odd number satisfying (4). If C is not the unit
matrix, 1 is an eigenvalue of neither C nor C. Therefore, if C is not
the unit matrix, 1 is not an eigenvalue of f(C).

On the other hand,

det f(A) = (detA)
q+n′

2 (det Ā)
n′−q

2 = x
q+n′

2 (x−1)
n′−q

2 = xq = 1

and, obviously det f(B) = 1. Therefore, f(G) ⊂ SL(n,C). Since
AB 6= BA,

f(A)f(B) 6= f(B)f(A).

Therefore, f(G) is not abelian.
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