# On finite generation of symbolic Rees rings of space monomial curves and existence of negative curves 

Kazuhiko Kurano and Naoyuki Matsuoka<br>Dedicated to Professor Paul C. Roberts<br>on the occasion of his 60th birthday


#### Abstract

In this paper, we shall study finite generation of symbolic Rees rings of the defining ideal of the space monomial curves $\left(t^{a}, t^{b}, t^{c}\right)$ for pairwise coprime integers $a, b, c$ such that $(a, b, c) \neq(1,1,1)$. If such a ring is not finitely generated over a base field, then it is a counterexample to the Hilbert's fourteenth problem. Finite generation of such rings is deeply related to existence of negative curves on certain normal projective surfaces. We study a sufficient condition (Definition 3.6) for existence of a negative curve. Using it, we prove that, in the case of $(a+b+c)^{2}>a b c$, a negative curve exists. Using a computer, we shall show that there exist examples in which this sufficient condition is not satisfied.


## 1 Introduction

Let $k$ be a field. Let $R$ be a polynomial ring over $k$ with finitely many variables. For a field $L$ satisfying $k \subset L \subset Q(R)$, Hilbert asked in 1900 whether the $\operatorname{ring} L \cap R$ is finitely generated as a $k$-algebra or not. It is called the Hilbert's fourteenth problem.

The first counterexample to this problem was discovered by Nagata [14] in 1958. An easier counterexample was found by Paul C. Roberts [16] in 1990. Further counterexamples were given by Kuroda, Mukai, etc.

The Hilbert's fourteenth problem is deeply related to the following question of Cowsik [2]. Let $R$ be a regular local ring (or a polynomial ring over a field). Let $P$ be a prime ideal of $R$. Cowsik asked whether the symbolic Rees ring

$$
R_{s}(P)=\bigoplus_{r \geq 0} P^{(r)} T^{r}
$$

of $P$ is a Noetherian ring or not. His aim is to give a new approach to the Kronecker's problem, that asks whether affine algebraic curves are set theoretic complete
intersection or not. Kronecker's problem is still open, however, Roberts [15] gave a counterexample to Cowsik's question in 1985. Roberts constructed a regular local ring and a prime ideal such that the completion coincides with Nagata's counterexample to the Hilbert's fourteenth problem. In Roberts' example, the regular local ring contains a field of characteristic zero, and the prime ideal splits after completion. Later, Roberts [16] gave a new easier counterexample to both Hilbert's fourteenth problem and Cowsik's question. In his new example, the prime ideal does not split after completion, however, the ring still contains a field of characteristic zero. It was proved that analogous rings of characteristic positive are finitely generated ([9], [10]).

On the other hand, let $\mathfrak{p}_{k}(a, b, c)$ be the defining ideal of the space monomial curves $\left(t^{a}, t^{b}, t^{c}\right)$ in $k^{3}$. Then, $\mathfrak{p}_{k}(a, b, c)$ is generated by at most three binomials in $k[x, y, z]$. The symbolic Rees rings are deeply studied by many authors. Huneke [7] and Cutkosky [3] developed criterions for finite generation of such rings. In 1994, Goto, Nishida and Watanabe [4] proved that $R_{s}\left(\mathfrak{p}_{k}(7 n-3,(5 n-2) n, 8 n-3)\right)$ is not finitely generated over $k$ if the characteristic of $k$ is zero, $n \geq 4$ and $n \not \equiv 0(3)$. In their proof of infinite generation, they proved the finite generation of $R_{s}\left(\mathfrak{p}_{k}(7 n-3,(5 n-\right.$ 2) $n, 8 n-3)$ ) in the case where $k$ is of characteristic positive. Goto and Watanabe conjectured that, for any $a, b$ and $c, R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is always finitely generated over $k$ if the characteristic of $k$ is positive.

On the other hand, Cutkosky [3] gave a geometric meaning to the symbolic Rees ring $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$. Let $X$ be the blow-up of the weighted projective space $\operatorname{Proj}(k[x, y, z])$ at the smooth point $V_{+}\left(\mathfrak{p}_{k}(a, b, c)\right)$. Let $E$ be the exceptional curve of the blow-up. Finite generation of $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is equivalent to that of the total coordinate ring

$$
T C(X)=\bigoplus_{D \in \operatorname{Cl}(X)} H^{0}\left(X, \mathcal{O}_{X}(D)\right)
$$

of $X$. If $-K_{X}$ is ample, one can prove that $T C(X)$ is finitely generated using the cone theorem (cf. [8]) as in [6]. Cutkosky proved that $T C(X)$ is finitely generated if $\left(-K_{X}\right)^{2}>0$, or equivalently $(a+b+c)^{2}>a b c$. Finite generation of $T C(X)$ is deeply related to existence of a negative curve $C$, i.e., a curve $C$ on $X$ satisfying $C^{2}<0$ and $C \neq E$. In fact, in the case where $\sqrt{a b c} \notin \mathbb{Z}$, a negative exists if $T C(X)$ is finitely generated. If a negative exists in the case where the characteristic of $k$ is positive, then $T C(X)$ is finitely generated by a result of M. Artin [1].

By a standard method $(\bmod p$ reduction), if there exists a negative curve in the case of characteristic zero, then one can prove that a negative curve exists in the case of characteristic positive, therefore, $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is finitely generated in the case of characteristic positive (cf. Lemma 3.4). In the examples of Goto-NishidaWatanabe [4], a negative curve exists, however, $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is not finitely generated over $k$ in the case where $k$ is of characteristic zero (cf. Remark 3.5 below).

In Section 2, we shall prove that if $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is not finitely generated, then it is a counterexample to the Hilbert's fourteenth problem (cf. Theorem 2.1 and Remark 2.2).

In Section 3, we review some basic facts on finite generation of $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$. We define sufficient conditions for $X$ to have a negative curve (cf. Definition 3.6).

In Section 4, we shall prove that there exists a negative curve in the case where $(a+b+c)^{2}>a b c$ (cf. Theorem 4.3). We should mention that if $(a+b+c)^{2}>a b c$, then Cutkosky [3] proved that $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$ is finitely generated. Moreover if we assume $\sqrt{a b c} \notin \mathbb{Z}$, existence of a negative curve follows from finite generation. Existence of negative curves in these cases is an immediate conclusion of the cone theorem. Our proof of existence of a negative curve is very simple, purely algebraic, and do not need the cone theorem as Cutkosky's proof.

In Section 5, we discuss the degree of a negative curve (cf. Theorem 5.4). It is used in a computer programming in Section 6.1.

In Section 6.1, we prove that there exist examples in which a sufficient condition ((C2) in Definition 3.6) is not satisfied using a computer. In Section 6.2 , we give a computer programming to check whether a negative curve exist or not.

## 2 Symbolic Rees rings of monomial curves and Hilbert's fourteenth problem

Throughout of this paper, we assume that rings are commutative with unit.
For a prime ideal $P$ of a ring $A, P^{(r)}$ denotes the $r$-th symbolic power of $P$, i.e.,

$$
P^{(r)}=P^{r} A_{P} \cap A .
$$

By definition, it is easily seen that $P^{(r)} P^{\left(r^{\prime}\right)} \subset P^{\left(r+r^{\prime}\right)}$ for any $r, r^{\prime} \geq 0$, therefore,

$$
\bigoplus_{r \geq 0} P^{(r)} T^{r}
$$

is a subring of the polynomial ring $A[T]$. This subring is called the symbolic Rees ring of $P$, and denoted by $R_{s}(P)$.

Let $k$ be a field and $m$ be a positive integer. Let $a_{1}, \ldots, a_{m}$ be positive integers. Consider the $k$-algebra homomorphism

$$
\phi_{k}: k\left[x_{1}, \ldots, x_{m}\right] \longrightarrow k[t]
$$

given by $\phi_{k}\left(x_{i}\right)=t^{a_{i}}$ for $i=1, \ldots, m$, where $x_{1}, \ldots, x_{m}, t$ are indeterminates over $k$. Let $\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)$ be the kernel of $\phi_{k}$. We sometimes denote $\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)$ simply by $\mathfrak{p}$ or $\mathfrak{p}_{k}$ if no confusion is possible.

Theorem 2.1 Let $k$ be a field and $m$ be a positive integer. Let $a_{1}, \ldots, a_{m}$ be positive integers. Consider the prime ideal $\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)$ of the polynomial ring $k\left[x_{1}, \ldots, x_{m}\right]$.

Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t, T$ be indeterminates over $k$. Consider the following injective $k$-homomorphism

$$
\xi: k\left[x_{1}, \ldots, x_{m}, T\right] \longrightarrow k\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right)
$$

given by $\xi(T)=\alpha_{2} / \alpha_{1}$ and $\xi\left(x_{i}\right)=\alpha_{1} \beta_{i}+t^{a_{i}}$ for $i=1, \ldots, m$.
Then,
$k\left(\alpha_{1} \beta_{1}+t^{a_{1}}, \alpha_{1} \beta_{2}+t^{a_{2}}, \ldots, \alpha_{1} \beta_{m}+t^{a_{m}}, \alpha_{2} / \alpha_{1}\right) \cap k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right]=\xi\left(R_{s}\left(\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)\right)\right)$
holds true.
Proof. Set $L=k\left(\alpha_{1} \beta_{1}+t^{a_{1}}, \ldots, \alpha_{1} \beta_{m}+t^{a_{m}}, \alpha_{2} / \alpha_{1}\right)$. Set $d=G C D\left(a_{1}, \ldots, a_{m}\right)$.
Then, $L$ is included in $k\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t^{d}\right)$. Since

$$
k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right] \cap k\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t^{d}\right)=k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t^{d}\right]
$$

we obtain the equality

$$
L \cap k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right]=L \cap k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t^{d}\right] .
$$

By the commutativity of the diagram

it is enough to prove this theorem in the case where $G C D\left(a_{1}, \ldots, a_{m}\right)=1$.
In the rest of this proof, we assume $G C D\left(a_{1}, \ldots, a_{m}\right)=1$.
Consider the following injective $k$-homomorphism

$$
\tilde{\xi}: k\left[x_{1}, \ldots, x_{m}, T, t\right] \longrightarrow k\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right)
$$

given by $\tilde{\xi}(T)=\alpha_{2} / \alpha_{1}, \tilde{\xi}(t)=t$ and $\tilde{\xi}\left(x_{i}\right)=\alpha_{1} \beta_{i}+t^{a_{i}}$ for $i=1, \ldots, m$. Here, remark that $\alpha_{2} / \alpha_{1}, \alpha_{1} \beta_{1}+t^{a_{1}}, \alpha_{1} \beta_{2}+t^{a_{2}}, \ldots, \alpha_{1} \beta_{m}+t^{a_{m}}, t$ are algebraically independent over $k$. By definition, the map $\xi$ is the restriction of $\tilde{\xi}$ to $k\left[x_{1}, \ldots, x_{m}, T\right]$.

We set $S=k\left[x_{1}, \ldots, x_{m}\right]$ and $A=k\left[x_{1}, \ldots, x_{m}, t\right]$. Let $\mathfrak{q}$ be the ideal of $A$ generated by $x_{1}-t^{a_{1}}, \ldots, x_{m}-t^{a_{m}}$. Then $\mathfrak{q}$ is the kernel of the map $\tilde{\phi}_{k}: A \rightarrow k[t]$ given by $\tilde{\phi}_{k}(t)=t$ and $\tilde{\phi_{k}}\left(x_{i}\right)=t^{a_{i}}$ for each $i$. Since $\phi_{k}$ is the restriction of $\tilde{\phi_{k}}$ to $S$, $\mathfrak{q} \cap S=\mathfrak{p}$ holds.

Now we shall prove $\mathfrak{q}^{r} \cap S=\mathfrak{p}^{(r)}$ for each $r>0$. Since $\mathfrak{q}$ is a complete intersection, $\mathfrak{q}^{(r)}$ coincides with $\mathfrak{q}^{r}$ for any $r>0$. Therefore, it is easy to see $\mathfrak{q}^{r} \cap S \supset \mathfrak{p}^{(r)}$.

Since $G C D\left(a_{1}, \ldots, a_{m}\right)=1$, there exists a monomial $M$ in $S$ such that $\phi_{k}\left(x_{1}^{u}\right) t=$ $\phi_{k}(M)$ for some $u>0$. Let

$$
\tilde{\phi}_{k} \otimes 1: k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, t\right] \longrightarrow k\left[t, t^{-1}\right]
$$

be the localization of $\tilde{\phi}_{k}$. Then, the kernel of $\tilde{\phi}_{k} \otimes 1$ is equal to

$$
\mathfrak{q} k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, t\right]=\left(\mathfrak{p}, t-\frac{M}{x_{1}^{u}}\right) k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, t\right] .
$$

Setting $t^{\prime}=t-\frac{M}{x_{1}^{u}}$,

$$
\mathfrak{q} A\left[x_{1}^{-1}\right]=\left(\mathfrak{p}, t^{\prime}\right) k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, t^{\prime}\right]
$$

holds. Since $x_{1}, \ldots, x_{m}, t^{\prime}$ are algebraically independent over $k$,

$$
\mathfrak{q}^{r} A\left[x_{1}^{-1}\right] \cap S\left[x_{1}^{-1}\right]=\left(\mathfrak{p}, t^{\prime}\right)^{r} k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}, t^{\prime}\right] \cap k\left[x_{1}, \ldots, x_{m}, x_{1}^{-1}\right]=\mathfrak{p}^{r} S\left[x_{1}^{-1}\right]
$$

holds. Therefore,

$$
\mathfrak{q}^{r} \cap S \subset \mathfrak{q}^{r} A\left[x_{1}^{-1}\right] \cap S=\mathfrak{p}^{r} S\left[x_{1}^{-1}\right] \cap S \subset \mathfrak{p}^{(r)} .
$$

We have completed the proof of $\mathfrak{q}^{r} \cap S=\mathfrak{p}^{(r)}$.
Let $R(\mathfrak{q})$ be the Rees ring of the ideal $\mathfrak{q}$, i.e.,

$$
R(\mathfrak{q})=\bigoplus_{r \geq 0} \mathfrak{q}^{r} T^{r} \subset A[T] .
$$

Then, since $\mathfrak{q}^{r} \cap S=\mathfrak{p}^{(r)}$ for $r \geq 0$,

$$
R(\mathfrak{q}) \cap S[T]=R_{S}(\mathfrak{p})
$$

holds. It is easy to verify

$$
R(\mathfrak{q}) \cap Q(S[T])=R_{s}(\mathfrak{p})
$$

because $Q(S[T]) \cap A[T]=S[T]$, where $Q()$ means the field of fractions. Here remark that $S[T]=k\left[x_{1}, \ldots, x_{m}, T\right]$ and $A[T]=k\left[x_{1}, \ldots, x_{m}, T, t\right]$. Therefore, we obtain the equality

$$
\begin{equation*}
\tilde{\xi}(R(\mathfrak{q})) \cap L=\xi\left(R_{s}(\mathfrak{p})\right) . \tag{1}
\end{equation*}
$$

Here, remember that $L$ is the field of fractions of $\operatorname{Im}(\xi)$.
On the other hand, setting $x_{i}^{\prime}=x_{i}-t^{a_{i}}$ for $i=1, \ldots, m$, we obtain the following:

$$
\begin{aligned}
R(\mathfrak{q}) & =k\left[x_{1}, \ldots, x_{m}, x_{1}^{\prime} T, \ldots, x_{m}^{\prime} T, t\right] \\
& =k\left[x_{1}^{\prime}, \ldots, x_{m}^{\prime}, x_{1}^{\prime} T, \ldots, x_{m}^{\prime} T, t\right]
\end{aligned}
$$

Here, remark that $x_{1}^{\prime}, \ldots, x_{m}^{\prime}, T, t$ are algebraically independent over $k$.
By definition, $\tilde{\xi}\left(x_{i}^{\prime}\right)=\alpha_{1} \beta_{i}$, and $\tilde{\xi}\left(x_{i}^{\prime} T\right)=\alpha_{2} \beta_{i}$ for each $i$.
We set

$$
\begin{equation*}
B=\tilde{\xi}(R(\mathfrak{q})) \tag{2}
\end{equation*}
$$

and $C=k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right]$. Here,

$$
B=\left(k\left[\alpha_{i} \beta_{j} \mid i=1,2 ; j=1, \ldots, m\right]\right)[t] \subset C .
$$

Since $B$ is a direct summand of $C$ as a $B$-module, the equality

$$
\begin{equation*}
C \cap Q(B)=B \tag{3}
\end{equation*}
$$

holds in $Q(C)$.
Then, since $L \subset Q(B)$, we obtain

$$
C \cap L=(C \cap Q(B)) \cap L=B \cap L=\xi\left(R_{s}(\mathfrak{p})\right)
$$

by the equations (1), (2) and (3).
q.e.d.

Remark 2.2 Let $k$ be a field. Let $R$ be a polynomial ring over $k$ with finitely many variables. For a field $L$ satisfying $k \subset L \subset Q(R)$, Hilbert asked in 1900 whether the ring $L \cap R$ is finitely generated as a $k$-algebra or not. It is called the Hilbert's fourteenth problem.

The first counterexample to this problem was discovered by Nagata [14] in 1958. An easier counterexample was found by Paul C. Roberts [16] in 1990. Further counterexamples were given by Kuroda, Mukai, etc.

On the other hand, Goto, Nishida and Watanabe [4] proved that $R_{s}\left(\mathfrak{p}_{k}(7 n-\right.$ $3,(5 n-2) n, 8 n-3))$ is not finitely generated over $k$ if the characteristic of $k$ is zero, $n \geq 4$ and $n \not \equiv 0$ (3). By Theorem 2.1, we know that they are new counterexamples to the Hilbert's fourteenth problem.

Remark 2.3 With notation as in Theorem 2.1, we set

$$
\begin{aligned}
D_{1} & =\alpha_{1} \frac{\partial}{\partial \alpha_{1}}+\alpha_{2} \frac{\partial}{\partial \alpha_{2}}-\beta_{1} \frac{\partial}{\partial \beta_{1}}-\cdots-\beta_{m} \frac{\partial}{\partial \beta_{m}} \\
D_{2} & =a_{1} t^{a_{1}-1} \frac{\partial}{\partial \beta_{1}}+\cdots+a_{m} t^{a_{m}-1} \frac{\partial}{\partial \beta_{m}}-\alpha_{1} \frac{\partial}{\partial t} .
\end{aligned}
$$

Assume that the characteristic of $k$ is zero.
Then, one can prove that $\xi\left(R_{s}\left(\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)\right)\right)$ is equal to the kernel of the derivations $D_{1}$ and $D_{2}$, i.e.,

$$
\xi\left(R_{s}\left(\mathfrak{p}_{k}\left(a_{1}, \ldots, a_{m}\right)\right)\right)=\left\{f \in k\left[\alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{m}, t\right] \mid D_{1}(f)=D_{2}(f)=0\right\} .
$$

## 3 Symbolic Rees rings of space monomial curves

In the rest of this paper, we restrict ourselves to the case $m=3$. For the simplicity of notation, we write $x, y, z, a, b, c$ for $x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}$, respectively. We regard the polynomial ring $k[x, y, z]$ as a $\mathbb{Z}$-graded ring by $\operatorname{deg}(x)=a, \operatorname{deg}(y)=b$ and $\operatorname{deg}(z)=c$.
$\mathfrak{p}_{k}(a, b, c)$ is the kernel of the $k$-algebra homomorphism

$$
\phi_{k}: k[x, y, z] \longrightarrow k[t]
$$

given by $\phi_{k}(x)=t^{a}, \phi_{k}(y)=t^{b}, \phi_{k}(z)=t^{c}$.

By a result of Herzog [5], we know that $\mathfrak{p}_{k}(a, b, c)$ is generated by at most three elements. For example, $\mathfrak{p}_{k}(3,4,5)$ is minimally generated by $x^{3}-y z, y^{2}-z x$ and $z^{2}-x^{2} y$. On the other hand, $\mathfrak{p}_{k}(3,5,8)$ is minimally generated by $x^{5}-y^{3}$ and $z-x y$. We can choose a generating system of $\mathfrak{p}_{k}(a, b, c)$ which is independent of $k$.

We are interested in the symbolic powers of $\mathfrak{p}_{k}(a, b, c)$. If $\mathfrak{p}_{k}(a, b, c)$ is generated by two elements, then the symbolic powers always coincide with ordinary powers because $\mathfrak{p}_{k}(a, b, c)$ is a complete intersection. However, it is known that, if $\mathfrak{p}_{k}(a, b, c)$ is minimally generated by three elements, the second symbolic power is strictly bigger than the second ordinary power. For example, the element

$$
h=\left(x^{3}-y z\right)^{2}-\left(y^{2}-z x\right)\left(z^{2}-x^{2} y\right)
$$

is contained in $\mathfrak{p}_{k}(3,4,5)^{2}$, and is divisible by $x$. Therefore, $h / x$ is an element in $\mathfrak{p}_{k}(3,4,5)^{(2)}$ of degree 15 . Since $\left[\mathfrak{p}_{k}(3,4,5)^{2}\right]_{15}=0, h / x$ is not contained in $\mathfrak{p}_{k}(3,4,5)^{2}$.

We are interested in finite generation of the symbolic Rees ring $R_{s}\left(\mathfrak{p}_{k}(a, b, c)\right)$. It is known that this problem is reduced to the case where $a, b$ and $c$ are pairwise coprime, i.e.,

$$
(a, b)=(b, c)=(c, a)=1 .
$$

In the rest of this paper, we always assume that $a, b$ and $c$ are pairwise coprime. Let $\mathbb{P}_{k}(a, b, c)$ be the weighted projective space $\operatorname{Proj}(k[x, y, z])$. Then

$$
\mathbb{P}_{k}(a, b, c) \backslash\left\{V_{+}(x, y), \quad V_{+}(y, z), \quad V_{+}(z, x)\right\}
$$

is a regular scheme. In particular, $\mathbb{P}_{k}(a, b, c)$ is smooth at the point $V_{+}\left(\mathfrak{p}_{k}(a, b, c)\right)$. Let $\pi: X_{k}(a, b, c) \rightarrow \mathbb{P}_{k}(a, b, c)$ be the blow-up at $V_{+}\left(\mathfrak{p}_{k}(a, b, c)\right)$. Let $E$ be the exceptional divisor, i.e.,

$$
E=\pi^{-1}\left(V_{+}\left(\mathfrak{p}_{k}(a, b, c)\right)\right) .
$$

We sometimes denote $\mathfrak{p}_{k}(a, b, c)$ (resp. $\left.\mathbb{P}_{k}(a, b, c), X_{k}(a, b, c)\right)$ simply by $\mathfrak{p}$ or $\mathfrak{p}_{k}$ (resp. $\mathbb{P}$ or $\mathbb{P}_{k}, X$ or $X_{k}$ ) if no confusion is possible.

It is easy to see that

$$
\mathrm{Cl}(\mathbb{P})=\mathbb{Z} H \simeq \mathbb{Z},
$$

where $H$ is a Weil divisor corresponding to the reflexive sheaf $\mathcal{O}_{\mathbb{P}}(1)$. Set $H=$ $\sum_{i} m_{i} D_{i}$, where $D_{i}$ 's are subvarieties of $\mathbb{P}$ of codimension one. We may choose $D_{i}$ 's such that $D_{i} \not \supset V_{+}(\mathfrak{p})$ for any $i$. Then, set $A=\sum_{i} m_{i} \pi^{-1}\left(D_{i}\right)$.

One can prove that

$$
\mathrm{Cl}(X)=\mathbb{Z} A+\mathbb{Z} E \simeq \mathbb{Z}^{2} .
$$

Since all Weil divisors on $X$ are $\mathbb{Q}$-Cartier, we have the intersection pairing

$$
\mathrm{Cl}(X) \times \mathrm{Cl}(X) \longrightarrow \mathbb{Q},
$$

that satisfies

$$
A^{2}=\frac{1}{a b c}, \quad E^{2}=-1, \quad A \cdot E=0 .
$$

Therefore, we have

$$
\left(n_{1} A-r_{1} E\right) \cdot\left(n_{2} A-r_{2} E\right)=\frac{n_{1} n_{2}}{a b c}-r_{1} r_{2} .
$$

Here, we have the following natural identification:

$$
H^{0}\left(X, \mathcal{O}_{X}(n A-r E)\right)=\left\{\begin{array}{cc}
{\left[\mathfrak{p}^{(r)}\right]_{n}} & (r \geq 0) \\
S_{n} & (r<0)
\end{array}\right.
$$

Therefore, the total coordinate ring (or Cox ring)

$$
T C(X)=\bigoplus_{n, r \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}(n A-r E)\right)
$$

is isomorphic to the extended symbolic Rees ring

$$
R_{s}(\mathfrak{p})\left[T^{-1}\right]=\cdots \oplus S T^{-2} \oplus S T^{-1} \oplus S \oplus \mathfrak{p} T \oplus \mathfrak{p}^{(2)} T^{2} \oplus \cdots
$$

We refer the reader to Hu-Keel [6] for finite generation of total coordinate rings. It is well-known that $R_{s}(\mathfrak{p})\left[T^{-1}\right]$ is Noetherian if and only if so is $R_{s}(\mathfrak{p})$.

Remark 3.1 By Huneke's criterion [7] and a result of Cutkosky [3], the following four conditions are equivalent:
(1) $R_{s}(\mathfrak{p})$ is a Noetherian ring, or equivalently, finitely generated over $k$.
(2) $T C(X)$ is a Noetherian ring, or equivalently, finitely generated over $k$.
(3) There exist positive integers $r, s, f \in \mathfrak{p}^{(r)}, g \in \mathfrak{p}^{(s)}$, and $h \in(x, y, z) \backslash \mathfrak{p}$ such that

$$
\ell_{S_{(x, y, z)}}\left(S_{(x, y, z)} /(f, g, h)\right)=r s \cdot \ell_{S_{(x, y, z)}}\left(S_{(x, y, z)} /(\mathfrak{p}, h)\right),
$$

where $\ell_{(x, y, z)}$ is the length as an $S_{(x, y, z)}$-module.
(4) There exist curves $C$ and $D$ on $X$ such that

$$
C \neq D, \quad C \neq E, \quad D \neq E, \quad C . D=0 .
$$

Here, a curve means a closed irreducible reduced subvariety of dimension one.
The condition (4) as above is equivalent to that just one of the following two conditions is satisfied:
(4-1) There exist curves $C$ and $D$ on $X$ such that

$$
C \neq E, \quad D \neq E, \quad C^{2}<0, \quad D^{2}>0, \quad C . D=0 .
$$

(4-2) There exist curves $C$ and $D$ on $X$ such that

$$
C \neq E, \quad D \neq E, \quad C \neq D, \quad C^{2}=D^{2}=0 .
$$

Definition 3.2 A curve $C$ on $X$ is called a negative curve if

$$
C \neq E \text { and } C^{2}<0
$$

Remark 3.3 Suppose that a divisor $F$ is linearly equivalent to $n A-r E$. Then, we have

$$
F^{2}=\frac{n^{2}}{a b c}-r^{2}
$$

If (4-2) in Remark 3.1 is satisfied, then all of $a, b$ and $c$ must be squares of integers because $a, b, c$ are pairwise coprime. In the case where one of $a, b$ and $c$ is not square, the condition (4) is equivalent to (4-1). Therefore, in this case, a negative curve exists if $R_{s}(\mathfrak{p})$ is finitely generated over $k$.

Suppose $(a, b, c)=(1,1,1)$. Then $\mathfrak{p}$ coincides with $(x-y, y-z)$. Of course, $R_{s}(\mathfrak{p})$ is a Noetherian ring since the symbolic powers coincide with the ordinary powers. By definition it is easy to see that there is no negative curve in this case, therefore, (4-2) in Remark 3.1 happens.

The authors know no other examples in which (4-2) happens.
In the case of $(a, b, c)=(3,4,5)$, the proper transform of

$$
V_{+}\left(\frac{\left(x^{3}-y z\right)^{2}-\left(y^{2}-z x\right)\left(z^{2}-x^{2} y\right)}{x}\right)
$$

is the negative curve on $X$, that is linearly equivalent to $15 A-2 E$.
It is proved that two distinct negative curves never exist.
In the case where the characteristic of $k$ is positive, Cutkosky [3] proved that $R_{s}(\mathfrak{p})$ is finitely generated over $k$ if there exists a negative curve on $X$.

We remark that there exists a negative curve on $X$ if and only if there exists positive integers $n$ and $r$ such that

$$
\frac{n}{r}<\sqrt{a b c} \text { and }\left[\mathfrak{p}^{(r)}\right]_{n} \neq 0
$$

We are interested in existence of a negative curve. Let $a, b$ and $c$ be pairwise coprime positive integers. By the following lemma, if there exists a negative curve on $X_{k_{0}}(a, b, c)$ for a field $k_{0}$ of characteristic 0 , then there exists a negative curve on $X_{k}(a, b, c)$ for any field $k$.

Lemma 3.4 Let $a, b$ and $c$ be pairwise coprime positive integers.

1. Let $K / k$ be a field extension. Then, for any integers $n$ and $r$,

$$
\left[\mathfrak{p}_{k}(a, b, c)^{(r)}\right]_{n} \otimes_{k} K=\left[\mathfrak{p}_{K}(a, b, c)^{(r)}\right]_{n} .
$$

2. For any integers $n$, $r$ and any prime number $p$,

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left[\mathfrak{p}_{\mathbb{F}_{p}}(a, b, c)^{(r)}\right]_{n} \geq \operatorname{dim}_{\mathbb{Q}}\left[\mathfrak{p}_{\mathbb{Q}}(a, b, c)^{(r)}\right]_{n}
$$

holds, where $\mathbb{Q}$ is the field of rational numbers, and $\mathbb{F}_{p}$ is the prime field of characteristic $p$. Here, $\operatorname{dim}_{\mathbb{F}_{p}}$ (resp. $\operatorname{dim}_{\mathbb{Q}}$ ) denotes the dimension as an $\mathbb{F}_{p^{-}}$ vector space (resp. $\mathbb{Q}$-vector space).

Proof. Since $S \rightarrow S \otimes_{k} K$ is flat, it is easy to prove the assertion (1).
We shall prove the assertion (2). Let $\mathbb{Z}$ be the ring of rational integers. Set $S_{\mathbb{Z}}=\mathbb{Z}[x, y, z]$. Let $\mathfrak{p}_{\mathbb{Z}}$ be the kernel of the ring homomorphism

$$
\phi_{\mathbb{Z}}: S_{\mathbb{Z}} \longrightarrow \mathbb{Z}[t]
$$

given by $\phi_{\mathbb{Z}}(x)=t^{a}, \phi_{\mathbb{Z}}(y)=t^{b}$ and $\phi_{\mathbb{Z}}(z)=t^{c}$. Since the cokernel of $\phi_{\mathbb{Z}}$ is $\mathbb{Z}$-free module, we know

$$
\mathfrak{p}_{\mathbb{Z}} \otimes_{\mathbb{Z}} k=\operatorname{Ker}\left(\phi_{\mathbb{Z}}\right) \otimes_{\mathbb{Z}} k=\operatorname{Ker}\left(\phi_{k}\right)=\mathfrak{p}_{k}
$$

for any field $k$.
Consider the following exact sequence of $\mathbb{Z}$-free modules:

$$
0 \longrightarrow \mathfrak{p}_{\mathbb{Z}}{ }^{(r)} \longrightarrow S_{\mathbb{Z}} \longrightarrow S_{\mathbb{Z}} / \mathfrak{p}_{\mathbb{Z}}{ }^{(r)} \longrightarrow 0
$$

For any field $k$, the following sequence is exact:

$$
0 \longrightarrow \mathfrak{p}_{\mathbb{Z}}^{(r)} \otimes_{\mathbb{Z}} k \longrightarrow S \longrightarrow S_{\mathbb{Z}} / \mathfrak{p}_{\mathbb{Z}}^{(r)} \otimes_{\mathbb{Z}} k \longrightarrow 0
$$

Since $\mathfrak{p}_{\mathbb{Z}} S_{\mathbb{Z}}\left[x^{-1}\right]$ is generated by a regular sequence, we know

$$
\mathfrak{p}_{\mathbb{Z}}{ }^{(r)} S_{\mathbb{Z}}\left[x^{-1}\right]=\mathfrak{p}_{\mathbb{Z}}{ }^{r} S_{\mathbb{Z}}\left[x^{-1}\right]
$$

for any $r \geq 0$. Therefore, for any $f \in \mathfrak{p}_{\mathbb{Z}}{ }^{(r)}$, there is a positive integer $u$ such that

$$
x^{u} f \in \mathfrak{p}_{\mathbb{Z}}{ }^{r} .
$$

Let $p$ be a prime number. Consider the natural surjective ring homomorphism

$$
\eta: S_{\mathbb{Z}} \longrightarrow S_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}_{p}
$$

Suppose $f \in \mathfrak{p}_{\mathbb{Z}}{ }^{(r)}$. Since $x^{u} f \in \mathfrak{p}_{\mathbb{Z}}{ }^{r}$ for some positive integer $u$, we obtain

$$
x^{u} \eta(f) \in \eta\left(\mathfrak{p}_{\mathbb{Z}}{ }^{r}\right)=\mathfrak{p}_{\mathbb{F}_{p}}{ }^{r} .
$$

Hence we know

$$
\mathfrak{p}_{\mathbb{Z}}^{(r)} \otimes_{\mathbb{Z}} \mathbb{F}_{p}=\eta\left(\mathfrak{p}_{\mathbb{Z}}{ }^{(r)}\right) \subset \mathfrak{p}_{\mathbb{F}_{p}}{ }^{(r)} .
$$

We obtain

$$
\operatorname{rank}_{\mathbb{Z}}\left[\mathfrak{p}_{\mathbb{Z}}{ }^{(r)}\right]_{n}=\operatorname{dim}_{\mathbb{F}_{p}}\left[\mathfrak{p}_{\mathbb{Z}}{ }^{(r)}\right]_{n} \otimes_{\mathbb{Z}} \mathbb{F}_{p} \leq \operatorname{dim}_{\mathbb{F}_{p}}\left[\mathfrak{p}_{\mathbb{F}_{p}}{ }^{(r)}\right]_{n}
$$

for any $r \geq 0$ and $n \geq 0$. Here, rank $_{\mathbb{Z}}$ denotes the rank as a $\mathbb{Z}$-module.
On the other hand, it is easy to see that

$$
\mathfrak{p}_{\mathbb{Z}}^{(r)} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathfrak{p}_{\mathbb{Q}}^{(r)}
$$

for any $r \geq 0$. Therefore, we have

$$
\operatorname{rank}_{\mathbb{Z}}\left[\mathfrak{p}_{\mathbb{Z}}^{(r)}\right]_{n}=\operatorname{dim}_{\mathbb{Q}}\left[\mathfrak{p}_{\mathbb{Q}}^{(r)}\right]_{n}
$$

for any $r \geq 0$ and $n \geq 0$.
Hence, we obtain

$$
\operatorname{dim}_{\mathbb{Q}}\left[\mathfrak{p}_{\mathbb{Q}}{ }^{(r)}\right]_{n} \leq \operatorname{dim}_{\mathbb{F}_{p}}\left[\mathfrak{p}_{\mathbb{F}_{p}}{ }^{(r)}\right]_{n}
$$

for any $r \geq 0, n \geq 0$, and any prime number $p$.
q.e.d.

Remark 3.5 Let $a, b, c$ be pairwise coprime positive integers. Assume that there exists a negative curve on $X_{k_{0}}(a, b, c)$ for a field $k_{0}$ of characteristic zero.

By Lemma 3.4, we know that there exists a negative curve on $X_{k}(a, b, c)$ for any field $k$. Therefore, if $k$ is a field of characteristic positive, then the symbolic Rees ring $R_{s}\left(\mathfrak{p}_{k}\right)$ is finitely generated over $k$ by a result of Cutkosky [3]. However, if $k$ is a field of characteristic zero, then $R_{s}\left(\mathfrak{p}_{k}\right)$ is not necessary Noetherian. In fact, assume that $k$ is of characteristic zero and $(a, b, c)=(7 n-3,(5 n-2) n, 8 n-3)$ with $n \not \equiv 0(3)$ and $n \geq 4$ as in Goto-Nishida-Watanabe [4]. Then there exists a negative curve, but $R_{s}\left(\mathfrak{p}_{k}\right)$ is not Noetherian.

Definition 3.6 Let $a, b, c$ be pairwise coprime positive integers. Let $k$ be a field.
We define the following three conditions:
(C1) There exists a negative curve on $X_{k}(a, b, c)$, i.e., $\left[\mathfrak{p}_{k}(a, b, c)^{(r)}\right]_{n} \neq 0$ for some positive integers $n, r$ satisfying $n / r<\sqrt{a b c}$.
(C2) There exist positive integers $n, r$ satisfying $n / r<\sqrt{a b c}$ and $\operatorname{dim}_{k} S_{n}>r(r+$ 1) $/ 2$.
(C3) There exist positive integers $q, r$ satisfying $a b c q / r<\sqrt{a b c}$ and $\operatorname{dim}_{k} S_{a b c q}>$ $r(r+1) / 2$.
Here, $\operatorname{dim}_{k}$ denotes the dimension as a $k$-vector space.
By the following lemma, we know the implications

$$
(C 3) \Longrightarrow(C 2) \Longrightarrow(C 1)
$$

since $\operatorname{dim}_{k}\left[\mathfrak{p}^{(r)}\right]_{n}=\operatorname{dim}_{k} S_{n}-\operatorname{dim}_{k}\left[S / \mathfrak{p}^{(r)}\right]_{n}$.
Lemma 3.7 Let $a, b, c$ be pairwise coprime positive integers. Let $r$ and $n$ be nonnegative integers. Then,

$$
\operatorname{dim}_{k}\left[S / \mathfrak{p}^{(r)}\right]_{n} \leq r(r+1) / 2
$$

holds true for any field $k$.

Proof. Since $x, y, z$ are non-zero divisors on $S / \mathfrak{p}^{(r)}$, we have only to prove that

$$
\operatorname{dim}_{k}\left[S / \mathfrak{p}^{(r)}\right]_{a b c q}=r(r+1) / 2
$$

for $q \gg 0$.
The left-hand side is the multiplicity of the $a b c$-th Veronese subring

$$
\left[S / \mathfrak{p}^{(r)}\right]^{(a b c)}=\oplus_{q \geq 0}\left[S / \mathfrak{p}^{(r)}\right]_{a b c q} .
$$

Therefore, for $q \gg 0$, we have

$$
\begin{aligned}
\operatorname{dim}_{k}\left[S / \mathfrak{p}^{(r)}\right]_{a b c q} & =\ell\left(\left[S / \mathfrak{p}^{(r)}+\left(x^{b c}\right)\right]^{(a b c)}\right) \\
& =e\left(\left(x^{b c}\right),\left[S / \mathfrak{p}^{(r)}\right]^{(a b c)}\right) \\
& =\frac{1}{a b c} e\left(\left(x^{b c}\right), S / \mathfrak{p}^{(r)}\right) \\
& =\frac{1}{a} e\left((x), S / \mathfrak{p}^{(r)}\right) \\
& =\frac{1}{a} e((x), S / \mathfrak{p}) \ell_{S_{\mathfrak{p}}}\left(S_{\mathfrak{p}} / \mathfrak{p}^{r} S_{\mathfrak{p}}\right) \\
& =\frac{r(r+1)}{2}
\end{aligned}
$$

Remark 3.8 It is easy to see that $\left[\mathfrak{p}_{k}(a, b, c)\right]_{n} \neq 0$ if and only if $\operatorname{dim}_{k} S_{n} \geq 2$. Therefore, if we restrict ourselves to $r=1$, then (C1) and (C2) are equivalent.

However, even if $\left[\mathfrak{p}_{k}(a, b, c)^{(2)}\right]_{n} \neq 0, \operatorname{dim}_{k} S_{n}$ is not necessary bigger than 3. In fact, since $\mathfrak{p}_{k}(5,6,7)$ contains $y^{2}-z x$, we know $\left[\mathfrak{p}_{k}(5,6,7)^{2}\right]_{24} \neq 0$. In this case, $\operatorname{dim}_{k} S_{24}$ is equal to three.

Here assume that (C1) is satisfied for $r=2$. Furthermore, we assume that the characteristic of $k$ is zero. Then, there exists $f \neq 0$ in $\left[\mathfrak{p}_{k}(a, b, c)^{(2)}\right]_{n}$ such that $n<2 \sqrt{a b c}$ for some $n>0$. Let $f=f_{1} \cdots f_{s}$ be the irreducible decomposition. Then, at least one of $f_{i}$ 's satisfies the condition (C1). If it satisfies (C1) with $r=1$, then (C2) is satisfied as above. Suppose that the irreducible component satisfies (C2) with $r=2$. For the simplicity of notation, we assume that $f$ itself is irreducible. We want to show $\operatorname{dim}_{k} S_{n} \geq 4$. Assume the contrary. By Lemma 3.4 (1), we may assume that $f$ is a polynomial with rational coefficients. Set

$$
f=k_{1} x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}-k_{2} x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}+k_{3} x^{\alpha_{3}} y^{\beta_{3}} z^{\gamma_{3}} .
$$

Furthermore, we may assume that $k_{1}, k_{2}, k_{3}$ are non-negative integers such that $G C D\left(k_{1}, k_{2}, k_{3}\right)=1$. Since

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \in \mathfrak{p}_{k}(a, b, c)
$$

as in Remark 5.1, we have

$$
\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\beta_{1} & \beta_{2} & \beta_{3} \\
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right)\left(\begin{array}{r}
k_{1} \\
-k_{2} \\
k_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Therefore, we have

$$
\left(x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}\right)^{k_{1}}\left(x^{\alpha_{3}} y^{\beta_{3}} z^{\gamma_{3}}\right)^{k_{3}}=\left(x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}\right)^{k_{2}} .
$$

Since $f$ is irreducible, $x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}$ and $x^{\alpha_{3}} y^{\beta_{3}} z^{\gamma_{3}}$ have no common divisor. Note that $k_{2}=k_{1}+k_{3}$ since $f \in \mathfrak{p}_{k}(a, b, c)$. Since $k_{1}$ and $k_{3}$ are relatively prime, there exist monomials $N_{1}$ and $N_{3}$ such that $x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}=N_{1}^{k_{1}+k_{3}}, x^{\alpha_{3}} y^{\beta_{3}} z^{\gamma_{3}}=N_{3}^{k_{1}+k_{3}}$ and $x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}=N_{1}^{k_{1}} N_{3}^{k_{3}}$. Then

$$
f=k_{1} N_{1}^{k_{1}+k_{3}}-\left(k_{1}+k_{3}\right) N_{1}^{k_{1}} N_{3}^{k_{3}}+k_{3} N_{3}^{k_{1}+k_{3}} .
$$

Then, $f$ is divisible by $N_{1}-N_{3}$. Since $f$ is irreducible, $f$ is equal to $N_{1}-N_{3}$. It contradicts to

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \in \mathfrak{p}_{k}(a, b, c) .
$$

Consequently, if (C1) is satisfied with $r \leq 2$ for a field $k$ of characteristic zero, then $(\mathrm{C} 2)$ is satisfied.

We shall discuss the difference between (C1) and (C2) in Section 6.1.
Remark 3.9 Let $a, b$ and $c$ be pairwise coprime positive integers. Assume that $\mathfrak{p}_{k}(a, b, c)$ is a complete intersection, i.e., generated by two elements.

Permuting $a, b$ and $c$, we may assume that

$$
\mathfrak{p}_{k}(a, b, c)=\left(x^{b}-y^{a}, z-x^{\alpha} y^{\beta}\right)
$$

for some $\alpha, \beta \geq 0$ satisfying $\alpha a+\beta b=c$. If $a b<c$, then

$$
\operatorname{deg}\left(x^{b}-y^{a}\right)=a b<\sqrt{a b c} .
$$

If $a b>c$, then

$$
\operatorname{deg}\left(z-x^{\alpha} y^{\beta}\right)=c<\sqrt{a b c} .
$$

If $a b=c$, then $(a, b, c)$ must be equal to $(1,1,1)$. Ultimately, there exists a negative curve if $(a, b, c) \neq(1,1,1)$.

## 4 The case where $(a+b+c)^{2}>a b c$

In the rest of this paper, we set $\xi=a b c$ and $\eta=a+b+c$ for pairwise coprime positive integers $a, b$ and $c$.

For $v=0,1, \ldots, \xi-1$, we set

$$
S^{(\xi, v)}=\oplus_{q \geq 0} S_{\xi q+v}
$$

This is a module over $S^{(\xi)}=\oplus_{q \geq 0} S_{\xi q}$.

## Lemma 4.1

$$
\operatorname{dim}_{k}\left[S^{(\xi, v)}\right]_{q}=\operatorname{dim}_{k} S_{\xi q+v}=\frac{1}{2}\left\{\xi q^{2}+(\eta+2 v) q+2 \operatorname{dim}_{k} S_{v}\right\}
$$

holds for any $q \geq 0$.
The following simple proof is due to Professor Kei-ichi Watanabe. We appreciate him very much.
Proof. We set $a_{n}=\operatorname{dim}_{k} S_{n}$ for each integer $n$. Set

$$
f(t)=\sum_{n \in \mathbb{Z}} a_{n} t^{n} .
$$

Here we put $a_{n}=0$ for $n<0$. Then, the equality

$$
f(t)=\frac{1}{\left(1-t^{a}\right)\left(1-t^{b}\right)\left(1-t^{c}\right)}
$$

holds.
Set $b_{n}=a_{n}-a_{n-\xi}$. Then, $b_{n}$ is equal to the coefficient of $t^{n}$ in $\left(1-t^{\xi}\right) f(t)$ for each $n$. Furthermore, $b_{n}-b_{n-1}$ is equal to the coefficient of $t^{n}$ in $(1-t)\left(1-t^{\xi}\right) f(t)$ for each $n$.

On the other hand, we have the equality

$$
\begin{equation*}
(1-t)\left(1-t^{\xi}\right) f(t)=g(t) \times \frac{1}{1-t}=g(t) \times\left(1+t+t^{2}+\cdots\right) \tag{4}
\end{equation*}
$$

where

$$
g(t)=\frac{1+t+\cdots+t^{\xi-1}}{\left(1+t+\cdots+t^{a-1}\right)\left(1+t+\cdots+t^{b-1}\right)\left(1+t+\cdots+t^{c-1}\right)}
$$

Since $a, b$ and $c$ are pairwise coprime, $g(t)$ is a polynomial of degree $\xi-\eta+2$. Therefore, the coefficient of $t^{n}$ in $(1-t)\left(1-t^{\xi}\right) f(t)$ is equal to $g(1)$ for $n \geq \xi-\eta+2$ by the equation (4). It is easy to see $g(1)=1$.

Since $b_{n}-b_{n-1}=1$ for $n \geq \xi+1$,

$$
b_{n}=b_{\xi}+(n-\xi)
$$

holds for any $n \geq \xi$. Then,

$$
\begin{aligned}
a_{\xi q+v}-a_{v} & =\sum_{i=1}^{q}\left(a_{\xi i+v}-a_{\xi(i-1)+v}\right) \\
& =\sum_{i=1}^{q} b_{\xi i+v} \\
& =\sum_{i=1}^{q}\left(b_{\xi}+\xi(i-1)+v\right) \\
& =b_{\xi} q+\xi \frac{(q-1) q}{2}+v q \\
& =\frac{\xi}{2} q^{2}+\left(b_{\xi}-\frac{\xi}{2}+v\right) q
\end{aligned}
$$

Recall that $b_{\xi}$ is the coefficient of $t^{\xi}$ in

$$
\begin{equation*}
\left(1-t^{\xi}\right) f(t)=\frac{g(t)}{(1-t)^{2}}=g(t) \times\left(1+2 t+\cdots+(n+1) t^{n}+\cdots\right) \tag{5}
\end{equation*}
$$

Setting

$$
g(t)=c_{0}+c_{1} t+\cdots+c_{\xi-\eta+2} t^{\xi-\eta+2}
$$

it is easy to see

$$
\begin{equation*}
c_{i}=c_{\xi-\eta+2-i} \tag{6}
\end{equation*}
$$

for each $i$. Therefore, by the equations (5) and (6), we have

$$
b_{\xi}=c_{0}(\xi+1)+c_{1} \xi+\cdots+c_{\xi-\eta+2}(\eta-1)=\left(c_{0}+c_{1}+\cdots+c_{\xi-\eta+2}\right) \times \frac{\xi+\eta}{2}
$$

Since $g(1)=1$, we have $b_{\xi}=\frac{\xi+\eta}{2}$. Thus,

$$
a_{\xi q+v}=\frac{\xi}{2} q^{2}+\left(\frac{\xi+\eta}{2}-\frac{\xi}{2}+v\right) q+a_{v}
$$

q.e.d.

Before proving Theorem 4.3, we need the following lemma:
Lemma 4.2 Assume that $a, b$ and $c$ are pairwise coprime positive integers such that $(a, b, c) \neq(1,1,1)$. Then, $\eta-\sqrt{\xi} \neq 0,1,2$.

Proof. We may assume that all of $a, b$ and $c$ are squares of integers. It is sufficient to show

$$
\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta \gamma \neq 0,1,2
$$

for pairwise coprime positive integers $\alpha, \beta, \gamma$ such that $(\alpha, \beta, \gamma) \neq(1,1,1)$.
Assume the contrary. Suppose that $\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)$ is a counterexample such that $\alpha_{0}+\beta_{0}+\gamma_{0}$ is minimum. We may assume $1 \leq \alpha_{0} \leq \beta_{0} \leq \gamma_{0}$.

Set

$$
f(x)=x^{2}-\alpha_{0} \beta_{0} x+\alpha_{0}^{2}+\beta_{0}^{2}
$$

First suppose $\alpha_{0} \beta_{0} \leq \gamma_{0}$. Then,

$$
f\left(\gamma_{0}\right) \geq f\left(\alpha_{0} \beta_{0}\right)=\alpha_{0}^{2}+\beta_{0}^{2} \geq 2
$$

Since $f\left(\gamma_{0}\right)=0,1$, or 2 , we have

$$
\gamma_{0}=\alpha_{0} \beta_{0} \quad \text { and } \quad \alpha_{0}^{2}+\beta_{0}^{2}=2
$$

Then, we obtain the equality $\alpha_{0}=\beta_{0}=\gamma_{0}=1$ immediately. It is a contradiction.
Next, suppose $\frac{\alpha_{0} \beta_{0}}{2}<\gamma_{0}<\alpha_{0} \beta_{0}$. Then, $0<\alpha_{0} \beta_{0}-\gamma_{0}<\gamma_{0}$ and

$$
f\left(\alpha_{0} \beta_{0}-\gamma_{0}\right)=f\left(\gamma_{0}\right)=0,1, \text { or } 2
$$

It is easy to see that $\alpha_{0}, \beta_{0}, \alpha_{0} \beta_{0}-\gamma_{0}$ are pairwise coprime positive integers. By the minimality of $\alpha_{0}+\beta_{0}+\gamma_{0}$, we have $\alpha_{0}=\beta_{0}=\alpha_{0} \beta_{0}-\gamma_{0}=1$. Then, $\gamma_{0}$ must be zero. It is a contradiction.

Finally, suppose $0<\gamma_{0} \leq \frac{\alpha_{0} \beta_{0}}{2}$. Since $\beta_{0} \leq \gamma_{0} \leq \frac{\alpha_{0} \beta_{0}}{2}$, we have $\alpha_{0} \geq 2$. If $\alpha_{0}=2$, then $2 \leq \beta_{0}=\gamma_{0}$. It contradicts to $\left(\beta_{0}, \gamma_{0}\right)=1$. Assume $\alpha_{0} \geq 3$. Since $\beta_{0}<\gamma_{0}$,

$$
f\left(\gamma_{0}\right)<f\left(\beta_{0}\right)=\left(2-\alpha_{0}\right) \beta_{0}^{2}+\alpha_{0}^{2} \leq 0
$$

It is a contradiction.
q.e.d.

Theorem 4.3 Let $a, b$ and $c$ be pairwise coprime integers such that $(a, b, c) \neq$ (1, 1, 1).

Then, we have the following:

1. Assume that $\sqrt{a b c} \notin \mathbb{Z}$. Then, (C3) holds if and only if $(a+b+c)^{2}>a b c$.
2. Assume that $\sqrt{a b c} \in \mathbb{Z}$. Then, (C3) holds if and only if $(a+b+c)^{2}>9 a b c$.
3. If $(a+b+c)^{2}>a b c$, then, (C2) holds. In particular, a negative curve exists in this case.

Proof. Remember that, by Lemma 4.1, we obtain

$$
\operatorname{dim}_{k} S_{\xi q}=\frac{1}{2}\left(\xi q^{2}+\eta q+2\right)
$$

for any $q \geq 0$.

First we shall prove the assertion (1). Assume that (C3) is satisfied. Then,

$$
\left\{\begin{array}{l}
\sqrt{\xi}>\frac{\xi q}{r} \\
\frac{\xi q^{2}+\eta q+2}{2}>\frac{r(r+1)}{2}
\end{array}\right.
$$

is satisfied for some positive integers $r$ and $q$. The second inequality is equivalent to $\xi q^{2}+\eta q \geq r(r+1)$ since both integers are even. Since

$$
\xi q^{2}+\eta q \geq r^{2}+r>\xi q^{2}+\sqrt{\xi} q
$$

we have $\eta>\sqrt{\xi}$ immediately.
Assume $\eta>\sqrt{\xi}$ and $\sqrt{\xi} \notin \mathbb{Z}$. Let $\epsilon$ be a real number satisfying $0<\epsilon<1$ and

$$
\begin{equation*}
2 \epsilon \sqrt{\xi}<\frac{\eta-\sqrt{\xi}}{2} . \tag{7}
\end{equation*}
$$

Since $\sqrt{\xi} \notin \mathbb{Q}$, there exist positive integers $r$ and $q$ such that

$$
\epsilon>r-\sqrt{\xi} q>0
$$

Then,

$$
\frac{r}{q}<\sqrt{\xi}+\frac{\epsilon}{q} \leq \sqrt{\xi}+\epsilon<\sqrt{\xi}+\frac{\eta-\sqrt{\xi}}{2}=\frac{\eta+\sqrt{\xi}}{2}
$$

Since $\sqrt{\xi} q+\epsilon>r$, we have

$$
\xi q^{2}+2 \epsilon \sqrt{\xi} q+\epsilon^{2}>r^{2} .
$$

Therefore

$$
r^{2}+r<\xi q^{2}+2 \epsilon \sqrt{\xi} q+\epsilon^{2}+\frac{\eta+\sqrt{\xi}}{2} q<\xi q^{2}+\eta q+\epsilon^{2}<\xi q^{2}+\eta q+2
$$

by the equation (7).
Next we shall prove the assertion (2). Suppose $\sqrt{\xi} \in \mathbb{Z}$. Since $r>\sqrt{\xi} q$, we may assume that $r=\sqrt{\xi} q+1$. Then,

$$
\left(\xi q^{2}+\eta q+2\right)-\left(r^{2}+r\right)=(\eta-3 \sqrt{\xi}) q .
$$

Therefore, the assertion (2) immediately follows from this.
Now, we shall prove the assertion (3). Assume $\eta>\sqrt{\xi}$. Since $(a, b, c) \neq(1,1,1)$, we know $\xi>1$. If $\sqrt{\xi} \notin \mathbb{Z}$, then the assertion immediately follows from the assertion (1). Therefore, we may assume $\sqrt{\xi} \in \mathbb{Z}$.

Let $n, q$ and $v$ be integers such that

$$
n=\xi q+v, \quad v=\sqrt{\xi}-1 .
$$

We set

$$
r=\sqrt{\xi} q+1
$$

Then,

$$
\sqrt{\xi} r=\xi q+\sqrt{\xi}>n
$$

Furthermore, by Lemma 4.1,

$$
\begin{aligned}
2 \operatorname{dim}_{k} S_{n}-\left(r^{2}+r\right) & =\left(\xi q^{2}+(\eta+2 v) q+2 \operatorname{dim}_{k} S_{v}\right)-\left(\xi q^{2}+3 \sqrt{\xi} q+2\right) \\
& =(\eta-\sqrt{\xi}-2) q+\left(2 \operatorname{dim}_{k} S_{v}-2\right)
\end{aligned}
$$

Since $\eta-\sqrt{\xi}$ is a non-negative integer, we know $\eta-\sqrt{\xi} \geq 3$ by Lemma 4.2. Consequently, we have $2 \operatorname{dim}_{k} S_{n}-\left(r^{2}+r\right)>0$ for $q \gg 0$.

Remark 4.4 If $(a+b+c)^{2}>a b c$, then $R_{s}(\mathfrak{p})$ is Noetherian by a result of Cutkosky [3].
If $(a+b+c)^{2}>a b c$ and $\sqrt{a b c} \notin \mathbb{Q}$, then the existence of a negative curve follows from Nakai's criterion for ampleness, Kleimann's theorem and the cone theorem (e.g. Theorem 1.2.23 and Theorem 1.4.23 in [11], Theorem 4-2-1 in [8]).

The condition $(a+b+c)^{2}>a b c$ is equivalent to $\left(-K_{X}\right)^{2}>0$. If $-K_{X}$ is ample, then the finite generation of the total coordinate ring follows from Proposition 2.9 and Corollary 2.16 in Hu -Keel [6].

If $(a, b, c)=(5,6,7)$, then the negative curve $C$ is the proper transform of the curve defined by $y^{2}-z x$. Therefore, $C$ is linearly equivalent to $12 A-E$. Since $(a+b+c)^{2}>a b c,\left(-K_{X}\right)^{2}>0$. Since

$$
-K_{X} \cdot C=(18 A-E) \cdot(12 A-E)=0.028 \cdots>0,
$$

$-K_{X}$ is ample by Nakai's criterion.
If $(a, b, c)=(7,8,9)$, then the negative curve $C$ is the proper transform of the curve defined by $y^{2}-z x$. Therefore, $C$ is linearly equivalent to $16 A-E$. Since $(a+b+c)^{2}>a b c,\left(-K_{X}\right)^{2}>0$. Since

$$
-K_{X} \cdot C=(24 A-E) \cdot(16 A-E)=-0.23 \cdots<0,
$$

$-K_{X}$ is not ample by Nakai's criterion.

## 5 Degree of a negative curve

Remark 5.1 Let $k$ be a field of characteristic zero, and $R$ be a polynomial ring over $k$ with variables $x_{1}, x_{2}, \ldots, x_{m}$. Suppose that $P$ is a prime ideal of $R$. By [12], we have

$$
P^{(r)}=\left\{h \in R \left\lvert\, \begin{array}{l|l}
0 \leq \alpha_{1}+\cdots+\alpha_{m}<r \Longrightarrow \frac{\partial^{\alpha_{1}+\cdots+\alpha_{m}} h}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{m}^{\alpha_{m}}} \in P
\end{array}\right.\right\} .
$$

In particular, if $f \in P^{(r)}$, then

$$
\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{m}} \in P^{(r-1)}
$$

Proposition 5.2 Let $a, b$ and $c$ be pairwise coprime integers, and $k$ be a field of characteristic zero. Suppose that a negative curve exists, i.e., there exist positive integers $n$ and $r$ satisfying $\left[\mathfrak{p}_{k}(a, b, c)^{(r)}\right]_{n} \neq 0$ and $n / r<\sqrt{a b c}$.

Set $n_{0}$ and $r_{0}$ to be

$$
\begin{aligned}
n_{0} & =\min \left\{n \in \mathbb{N} \mid \exists r>0 \text { such that } n / r<\sqrt{\xi} \text { and }\left[\mathfrak{p}^{(r)}\right]_{n} \neq 0\right\} \\
r_{0} & =\left\lfloor\frac{n_{0}}{\sqrt{\xi}}\right\rfloor+1
\end{aligned}
$$

where $\left\lfloor\frac{n_{0}}{\sqrt{\xi}}\right\rfloor$ is the maximum integer which is less than or equal to $\frac{n_{0}}{\sqrt{\xi}}$.
Then, the negative curve $C$ is linearly equivalent to $n_{0} A-r_{0} E$.
Proof. Suppose that the negative curve $C$ is linearly equivalent to $n_{1} A-r_{1} E$. Since $n_{1} / r_{1}<\sqrt{\xi}$ and $\left[\mathfrak{p}^{\left(r_{1}\right)}\right]_{n_{1}} \neq 0$, we have $n_{1} \geq n_{0}$. Since $H^{0}\left(X, \mathcal{O}\left(n_{0} A-r_{0} E\right)\right) \neq 0$ with $n_{0} / r_{0}<\sqrt{a b c}, n_{0} A-r_{0} E-C$ is linearly equivalent to an effective divisor. Therefore, $n_{0} \geq n_{1}$. Hence, $n_{0}=n_{1}$.

Since $n_{0} / r_{1}<\sqrt{\xi}, r_{0} \leq r_{1}$ holds. Now, suppose $r_{0}<r_{1}$. Let $f$ be the defining equation of $\pi(C)$, where $\pi: X \rightarrow \mathbb{P}$ is the blow-up at $V_{+}(\mathfrak{p})$. Then, we have

$$
\left[\mathfrak{p}^{\left(r_{1}-1\right)}\right]_{n_{0}}=\left[\mathfrak{p}^{\left(r_{1}\right)}\right]_{n_{0}}=k f
$$

If $n$ is an integer less than $n_{0}$, then $\left[\mathfrak{p}^{\left(r_{1}-1\right)}\right]_{n}=0$ because

$$
\frac{n}{r_{1}-1}<\frac{n_{0}}{r_{1}-1} \leq \frac{n_{0}}{r_{0}}<\sqrt{\xi}
$$

By Remark 5.1, we have

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \in \mathfrak{p}^{\left(r_{1}-1\right)}
$$

Since their degrees are strictly less than $n_{0}$, we know

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=0
$$

On the other hand, the equality

$$
a x \frac{\partial f}{\partial x}+b y \frac{\partial f}{\partial y}+c z \frac{\partial f}{\partial z}=n_{0} f
$$

holds. Remember that $k$ is a field of characteristic zero. It is a contradiction.
q.e.d.

Remark 5.3 Let $a, b$ and $c$ be pairwise coprime integers, and $k$ be a field of characteristic zero. Assume that the negative curve $C$ exists, and $C$ is linearly equivalent to $n_{0} A-r_{0} E$.

Then, by Proposition 5.2, we obtain

$$
\begin{aligned}
& n_{0}=\min \left\{n \in \mathbb{N} \left\lvert\,\left[\mathfrak{p}^{\left(\left\lfloor\frac{n}{\sqrt{\xi}}\right.\right.}\right\rfloor+1\right.\right) \\
&]_{n} \neq 0\right\} \\
& r_{0}=\left\lfloor\frac{n_{0}}{\sqrt{\xi}}\right\rfloor+1
\end{aligned}
$$

Theorem 5.4 Let $a, b$ and $c$ be pairwise coprime positive integers such that $\sqrt{\xi}>\eta$. Assume that (C2) is satisfied, i.e., there exist positive integers $n_{1}$ and $r_{1}$ such that $n_{1} / r_{1}<\sqrt{\xi}$ and $\operatorname{dim}_{k} S_{n_{1}}>r_{1}\left(r_{1}+1\right) / 2$. Suppose $n_{1}=\xi q_{1}+v_{1}$, where $q_{1}$ and $v_{1}$ are integers such that $0 \leq v_{1}<\xi$.

Then, $q_{1}<\frac{2 \operatorname{dim}_{k} S_{v_{1}}}{\sqrt{\xi}-\eta}$ holds.
In particular,

$$
n_{1}=\xi q_{1}+v_{1}<\frac{2 \xi \max \left\{\operatorname{dim}_{k} S_{t} \mid 0 \leq t<\xi\right\}}{\sqrt{\xi}-\eta}+\xi .
$$

Proof. We have

$$
r_{1}>\frac{n_{1}}{\sqrt{\xi}}=\sqrt{\xi} q_{1}+\frac{v_{1}}{\sqrt{\xi}}
$$

Therefore,

$$
2 \operatorname{dim}_{k} S_{n_{1}}>r_{1}^{2}+r_{1}>\xi q_{1}^{2}+2 v_{1} q_{1}+\frac{v_{1}^{2}}{\xi}+\sqrt{\xi} q_{1}+\frac{v_{1}}{\sqrt{\xi}}
$$

By Lemma 4.1, we have

$$
(\sqrt{\xi}-\eta) q_{1}<2 \operatorname{dim}_{k} S_{v_{1}}-\frac{v_{1}^{2}}{\xi}-\frac{v_{1}}{\sqrt{\xi}} \leq 2 \operatorname{dim}_{k} S_{v_{1}} .
$$

q.e.d.

Remember that, if $\sqrt{\xi}<\eta$, then (C2) is always satisfied by Theorem 4.3 (3).

## 6 Calculation by computer

In this section, we assume that the characteristic of $k$ is zero.

### 6.1 Examples that do not satisfy (C2)

Suppose that (C2) is satisfied, i.e., there exist positive integers $n_{1}$ and $r_{1}$ such that $n_{1} / r_{1}<\sqrt{\xi}$ and $\operatorname{dim}_{k} S_{n_{1}}>r_{1}\left(r_{1}+1\right) / 2$. Put $n_{1}=\xi q_{1}+v_{1}$, where $q_{1}$ and $v_{1}$ are integers such that $0 \leq v_{1}<\xi$. If $\sqrt{\xi}>\eta$, then $q_{1}<\frac{2 \operatorname{dim}_{k} S_{v_{1}}}{\sqrt{\xi}-\eta}$ holds by Theorem 5.4.

By the following programming on MATHEMATICA, we can check whether (C2) is satisfied or not in the case where $\sqrt{\xi}>\eta$.

```
c2[a_, b_, c_] :=
Do[
    If[(a + b + c)^2 > a b c , Print["-K: self-int positive"]; Goto[fin]];
    s = Series[((1 - t^a)(1 - t^b)(1 - t^c))^^(-1), {t, 0, a b c}];
    Do[ h = SeriesCoefficient[s, k];
                            m = IntegerPart[2 h/(Sqrt[a b c] - a - b - c)];
                            Do[ r = IntegerPart[(a b c q + k) (Sqrt[a b c]^(-1))] + 1;
                                    If[2 h + q(a + b + c) + a b c q^2 + 2qk > r (r + 1),
                                    Print[StringForm["n=``, r=``", a b c q + k, r]];
                                    Goto[fin]],
                    {q, 0,m}],
        {k, 0, a b c - 1}];
    Print["c2 is not satisfied"];
    Label[fin];
    Print["finished"]]
```

Calculations by a computer show that ( C 2 ) is not satisfied in some cases, for example, $(a, b, c)=(5,33,49),(7,11,20),(9,10,13), \cdots$.

The examples due to Goto-Nishida-Watanabe [4] have negative curves with $r=1$. Therefore, by Remark 3.8, they satisfy the condition (C2).

In the case where $(a, b, c)=(5,33,49),(7,11,20),(9,10,13), \cdots$, the authors do not know whether $R_{s}\left(\mathfrak{p}_{k}\right)$ is Noetherian or not.

Remark 6.1 Set

$$
\begin{aligned}
& A=\{(a, b, c) \mid 0<a \leq b \leq c \leq 50, a, b, c \text { are pairwise coprime }\} \\
& B=\{(a, b, c) \in A \mid a+b+c>\sqrt{a b c}\} \\
& C=\{(a, b, c) \in A \mid(a, b, c) \text { does not satisfy }(\mathrm{C} 2)\} .
\end{aligned}
$$

$\sharp A=6156, \sharp B=1950, \sharp C=457$. By Theorem 4.3, we know $B \cap C=\emptyset$.

### 6.2 Does a negative curve exist?

By the following simple computer programming on MATHEMATICA, it is possible to know whether a negative curve exists or not.

```
n[a1_, b1_, c1_, r1_, d1_] := (V = 0;
    Do[
        mono = {};
        Do[ e1 = d1 - i*a1;
            Do[ h1 = e1 - j*b1; k1 = Floor[h1/c1];
                If[ h1 / c1 == k1,
                    mono = Join[mono, {x^i y^j z^(k1)}]],
```

```
                    {j, 0, Floor[e1/b1]}
            ], {i, 0, Floor[d1/a1]}
        ];
    w = Length[mono];
    If[W > N[r1*(r1 + 1)/2],
        V = 1; W = w; J = d1; R = r1; H = N[r1*(r1 + 1)/2],
        If[ w > 0,
            f[x_, y_, z_] := mono;
            mat = {};
            Do[
                    Do[
                    mat = Join[mat, { D[f[x, y, z], {x, j}, {y, i - j}] }], {j, 0, i}
                    ], {i, 0, r1 - 1}
                    ];
            mat = mat /. x -> 1 /. y -> 1 /. z -> 1;
            q = MatrixRank[mat];
            If[q< w, V = 1; W = w; J = d1; R = r1; H = N[r1*(r1 + 1)/2] ]
        ]
        ]
    ]);
t[\mp@subsup{a}{-}{\prime},\mp@subsup{b}{-}{\prime},\mp@subsup{c}{-}{\prime},rmade_] := (
    Do[
        W = 0;
        p = Ceiling[r*Sqrt[a*b*c]] - 1;
        Do[
            n[a, b, c, r, p - u];
            If[V == 1,
                J1 = J; Break[]], {u, 0, a - 1}
            ];
        If[
            V == 1,
            Do[
                n[a, b, c, r, J1 - a*u];
                    If[V == 0,
                    J1 = J; Break[]], {u, 1, b*c}
                    ];
            Do[
                n[a, b, c, r, J1 - b*u];
                If[V == 0,
                    J1 = J; Break[]], {u, 1, a*c}
                    ];
```

```
        Do[
            n[a, b, c, r, J1 - c*u];
            If[V == 0,
                J1 = J; Break[]], {u, 1, c*a}
            ]
        ];
    If[W > 0, Break[]];
    Print["r th symbolic power does not contain a negative curve if r <= ",
        r], {r, 1, rmade}
    ];
If[W == 0,
    Print["finished"],
    Print["There exists a negative curve. Degree = ", J, ", r = ", R,
        ", Dimension of homog. comp. = ", W, ", # of equations = ", H]
    ]
)
```

By the command $\mathrm{t}[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{r}]$, we can check whether $\mathfrak{p}(a, b, c)^{(m)}$ contains an equation of a negative curve for $m=1,2, \cdots, r$.
$\mathfrak{p}(9,10,13)^{(m)}$ does not contain an equation of a negative curve if $m \leq 24$. Remember that $(9,10,13)$ does not satisfy (C2). Our computer gave up computation of $\mathfrak{p}(9,10,13)^{(25)}$ for scarcity of memories. We don't know whether ther exists a negative curve in the case $(9,10,13)$.

On the other hand, there are examples that (C2) is not satisfied but there exists a negative curve.

- Suppose $(a, b, c)=(5,33,49)$. Then (C2) is not satisfied, but $\left[\mathfrak{p}(5,33,49)^{(18)}\right]_{1617}$ contatins a negative curve.
- Suppose $(a, b, c)=(8,15,43)$. Then $(\mathrm{C} 2)$ is not satisfied, but $\left[\mathfrak{p}(8,15,43)^{(9)}\right]_{645}$ contains a negative curve.


## References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
[2] R. Cowsik, Symbolic powers and the number of defining equations, Algebra and its Applications, Lect. Notes in Pure and Appl. Math. 91 (1985), 13-14.
[3] S. D. Cutkosky, Symbolic algebras of monomial primes, J. reine angew. Math. 416 (1991), 71-89.
[4] S. Goto, K, Nishida and K.-I. Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question, Proc. Amer. Math. Soc. 120 (1994), 383-392.
[5] J. Herzog, Generators and relations of Abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193.
[6] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348.
[7] C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), 293-318.
[8] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in "Algebraic Geometry, Sendai," Adv. Stud. Pure Math. vol. 10 (1987), 283-360.
[9] K. Kurano, On finite generation of Rees rings defined by filtrations of ideals, J. Math. Kyoto Univ. 34 (1994), 73-86.
[10] K. Kurano, Positive characteristic finite generation of symbolic Rees algebras and Roberts' counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), 473-496.
[11] R. LaZarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics , 48. Springer-Verlag, Berlin, 2004.
[12] F. Lazzeri, O. Stănăsilă and T. Tognoli, Some remarks on $q$-flat $C^{\infty}$ functions, Bollettino U. M. I., (4) 9 (1974), 402-415.
[13] M. Morimoto and S. Goto, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves, Proc. Amer. Math. Soc. 116 (1992), 305-311.
[14] M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math. (1958), Cambridge Univ. Press, 1960.
[15] P. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc. 94 (1985), 589-592.
[16] P. Roberts, An infinitely generated symbolic blow-ups in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461-473.

Kazuhiko Kurano<br>Department of Mathematics<br>Faculty of Science and Technology<br>Meiji University<br>Higashimita 1-1-1, Tama-ku<br>Kawasaki 214-8571, Japan<br>kurano@math.meiji.ac.jp<br>http://www.math.meiji.ac.jp/~kurano<br>Naoyuki Matsuoka<br>Department of Mathematics<br>Faculty of Science and Technology<br>Meiji University<br>Higashimita 1-1-1, Tama-ku<br>Kawasaki 214-8571, Japan<br>matsuoka@math.meiji.ac.jp

