THE TOTAL COORDINATE RING OF A NORMAL PROJECTIVE VARIETY

E. JAVIER ELIZONDO, KAZUHIKO KURANO, AND KEI-ICHI WATANABE

1. Introduction

The total coordinate ring $\mathrm{TC}(\mathrm{X})$ of a variety is a generalization of the ring introduced and studied by Cox [Cox95] in connection with a toric variety. Consider a normal projective variety X with divisor class group $\mathrm{Cl}(X)$, and let us assume that it is a finitely generated free abelian group. We define the total coordinate ring of X to be

$$
\mathrm{TC}(X)=\bigoplus_{D} H^{0}\left(X, \mathcal{O}_{X}(D)\right)
$$

where the sum as above is taken over all Weil divisors of X contained in a fixed complete system of representatives of $\mathrm{Cl}(X)$. We refer to Definition 2.1 for a precise definition of $\mathrm{TC}(X)$.

Such rings grew out of an old problem of classical algebraic geometry, which we describe as follows. Let p_{1}, \ldots, p_{m} be distinct m points in the projective space \mathbb{P}^{r} over \mathbb{C}, and let $\pi: X \rightarrow \mathbb{P}^{r}$ be the blow up of \mathbb{P}^{r} at $\left\{p_{1}, \ldots, p_{m}\right\}$. Put $E_{i}=\pi^{-1}\left(p_{i}\right)$ for $i=1, \ldots, m$. Let H be a hyperplane in \mathbb{P}^{r} and put $A=\pi^{-1}(H)$. Then $\mathrm{Cl}(X)$ is a free abelian group with basis $\overline{E_{1}}, \ldots, \overline{E_{m}}, \bar{A}$. Then, we may regard $H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i=1}^{m} n_{i} E_{i}+n_{m+1} A\right)\right)$ as the linear system on \mathbb{P}^{r} of degree n_{m+1} passing through p_{i} with multiplicity at least $-n_{i}$ for each i. The total coordinate ring

$$
\mathrm{TC}(X)=\bigoplus_{n_{1}, \ldots, n_{m+1} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i=1}^{m} n_{i} E_{i}+n_{m+1} A\right)\right)
$$

facilitates the computation of $H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i=1}^{m} n_{i} E_{i}+n_{m+1} A\right)\right)$, where \mathbb{Z} denotes the ring of integers. In fact, if $\mathrm{TC}(X)$ is a Noetherian ring, then the dimension of $H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i=1}^{m} n_{i} E_{i}+\right.\right.$ $\left.n_{m+1} A\right)$) is a rational function in n_{1}, \ldots, n_{m+1}.

In the event that $\mathrm{TC}(X)$ is Noetherian for a normal projective variety with function field K whose divisor class group is finite free, the ring

$$
R(D)=\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}(n D)\right) t^{n} \subset K\left[t, t^{-1}\right]
$$

[^0]is a Noetherian ring for any Weil divisor D on X (e.g., Elizondo and Srinivas [ES02]). Furthermore,
$$
\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}(E+n D)\right)
$$
is a finitely generated $R(D)$-module for any Weil divisors D and E.
The total coordinate ring sometimes appears as an invariant subring. Mukai exhibited numerous examples where the total coordinate rings are not Noetherian, this being related to the Hilbert's fourteenth problem. See [Muk01] and [Muk02].

In the present paper, we shall prove that the total coordinate ring is a unique factorization domain for any connected normal Noetherian scheme whose divisor class group is finitely generated free abelian group in Corollary 1.2.

The main theorem of the paper is the following:
Theorem 1.1. Let X be a connected normal Noetherian scheme with function field K. Let D_{1}, \ldots, D_{r} be Weil divisors on X, and let t_{1}, \ldots, t_{r} be variables over K. We set

$$
R=\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} \subset S=K\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]
$$

1. Then, R is a Krull domain.
2. Assume that $Q(R)=Q(S)$, where $Q()$ stands for the field of fractions. Then there is a natural surjection

$$
\varphi: \mathrm{Cl}(X) /\left\langle\bar{D}_{1}, \ldots, \bar{D}_{r}\right\rangle \longrightarrow \mathrm{Cl}(R),
$$

where \bar{D} is the image in $\mathrm{Cl}(X)$ of a Weil divisor D on X.
3. If there exist integers n_{1}, \ldots, n_{r} such that $\sum_{i} n_{i} D_{i}$ is an ample divisor, then the map φ as above is an isomorphism.

The following is an immediate consequence (ref. Remark 2.2) of the above theorem.
Corollary 1.2. With the notation as in Theorem 1.1, R is a unique factorization domain if the set of the images of D_{1}, \ldots, D_{r} generate $\mathrm{Cl}(X)$.

In particular, the total coordinate ring is a unique factorization domain for a connected normal Noetherian scheme whose divisor class group is a finitely generated free abelian group.

We should mention that independently Berchtold and Hausen [BH02] proved that the total coordinate ring is a unique factorization domain for a locally factorial variety over an algebraically closed field whose Picard group is finitely generated free abelian group. Our method is purely algebraic, simple, and totally different from theirs. Here, we give a precise statement of the result of Berchtold and Hausen [BH02]. Let X be a normal variety over an algebraically closed field whose Picard group is finitely generated free abelian group. Let

$$
\mathrm{A}(X)=\bigoplus_{\bar{D} \in \operatorname{Pic}(X)} H^{0}\left(X, \mathcal{O}_{X}(D)\right)
$$

be the ring defined in the same way as in Definition 2.1 using all Cartier divisors. Observe that if the divisor class group of X is finitely generated free abelian group, this is the
subring of $\mathrm{TC}(X)$ [see (1) in Definition 2.1] consisting of those graded pieces corresponding to Cartier divisors. Then, Proposition 8.4 in [BH02] implies that the following four conditions are equivalent; (1) $\mathrm{A}(X)$ is a unique factorization domain, (2) X is locally factorial, (3) $\mathrm{Cl}(X)=\operatorname{Pic}(X),(4) \mathrm{A}(X)=\mathrm{TC}(X)$. Let $X_{\text {reg }}$ be the open subscheme consisting of nonsingular points of X. Furthermore, assume that the divisor class group of X is finitely generated free abelian group. Since the codimension of $X \backslash X_{\text {reg }}$ in X is at least 2 , TC $(X)=$ $\mathrm{TC}\left(X_{\text {reg }}\right)$ is satisfied. Then, Proposition 8.4 in [BH02] implies that TC $\left(X_{\text {reg }}\right)$ is a unique factorization domain since $X_{\text {reg }}$ is locally factorial. Therefore we know that $\mathrm{TC}(X)$ is a unique factorization domain by the result of Berchtold and Hausen. Here, we remark that $\mathrm{A}\left(X_{\text {reg }}\right)$ coincides with $\mathrm{TC}\left(X_{\text {reg }}\right)$ since $X_{\text {reg }}$ is locally factorial. On the other hand, $\mathrm{A}(X)=$ $\mathrm{TC}(X)$ if and only if X is locally factorial.

We remark that we do not assume that a scheme is of finite type over an algebraically closed field in Corollary 1.2.

We shall prove Theorem 1.1 in the next section. In the final section, we give some examples of total coordinate rings. We prove that the total coordinate ring of the blow up of a projective space at a finite number of points on a line is finitely generated, see Example 3.3. Next we give an example of a normal projective variety X that has a non-finitely generated total coordinate ring in Example 3.4.

Acknowledgement. The first author would like to thank the hospitality of the Tokyo Metropolitan University, during his visit in October 2001, where the proof of the main theorems were discussed. The second and third authors visited Mexico in 2000. We would like to thank the exchange program between Mexico and Japan, JSPS-Conacyt which supported our visit. We also would like to thank James Lewis for many corrections, to Paul Roberts and Vasudevan Srinivas for reading the first draft of this article, and to Florian Berchtold, Jürgen Hausen and the referee for many valuable comments.

2. The total coordinate ring

In this section we define the total coordinate ring and prove Theorem 1.1.
Definition 2.1. Let X be a connected normal Noetherian scheme with function field K. We assume that the divisor class group $\mathrm{Cl}(X)$ of X is isomorphic to $\mathbb{Z}^{\oplus s}$. Let D_{1}, \ldots, D_{s} be Weil divisors on X such that the set of their images generate $\mathrm{Cl}(X)$. Let t_{1}, \ldots, t_{s} be variables over K. We set

$$
R\left(X ; D_{1}, \ldots, D_{s}\right)=\bigoplus_{n_{1}, \ldots, n_{s} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right) t_{1}^{n_{1}} \cdots t_{s}^{n_{s}} \subset K\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]
$$

where we regard

$$
H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}\right)\right)=\left\{a \in K^{\times} \mid \operatorname{div}_{X}(a)+\sum_{i} n_{i} D_{i} \geq 0\right\} \cup\{0\}
$$

as an additive subgroup of K. It is easily seen that $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is a subring of $K\left[t_{1}^{ \pm 1}, \ldots, t_{s}^{ \pm 1}\right]$. The ring $R\left(X ; D_{1}, \ldots, D_{s}\right)$ is uniquely determined by X up to isomorphism, that is, it is independent of the choice of D_{1}, \ldots, D_{s} up to isomorphism. We call it
the total coordinate ring $\mathrm{TC}(X)$ of X. We may regard the total coordinate ring of X as a graded ring with the grading given by $\mathrm{Cl}(X)$. We sometimes write it as

$$
\begin{equation*}
\mathrm{TC}(X)=\bigoplus_{\bar{D} \in \mathrm{Cl}(X)} H^{0}\left(X, \mathcal{O}_{X}(D)\right) \tag{1}
\end{equation*}
$$

where \bar{D} denotes the class in $\mathrm{Cl}(X)$ represented by a Weil divisor D.
Before proving the main theorem, we give a remark.
Remark 2.2. With the notation given in Theorem 1.1, it is easily seen that $Q(R)$ coincides with $Q(S)$ if one of the following two conditions are satisfied; (1) the set of the images of D_{1}, \ldots, D_{s} generate $\mathrm{Cl}(X)$, (2) there exist integers n_{1}, \ldots, n_{r} such that $\sum_{i} n_{i} D_{i}$ is an ample divisor.

Even if $Q(R)=Q(S)$ is satisfied, the map φ in Theorem 1.1 is not an isomorphism in general, as can be seen in the following example. Let $\pi: X \rightarrow \mathbb{P}^{2}$ be the blow up of \mathbb{P}^{2} at a point p. Put $E=\pi^{-1}(p)$. Let H be a hyperplane in \mathbb{P}^{2} and put $A=\pi^{-1}(H)$. Let K be the function field of X and let t be a variable over K. Set

$$
R=\bigoplus_{n \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}(n A)\right) t^{n} \subset S=K\left[t^{ \pm 1}\right]
$$

Using the projection formula, we have $H^{0}\left(X, \mathcal{O}_{X}(n A)\right)=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(n H)\right)$. Therefore $Q(R)=Q(S)$ is satisfied. In this case, $\mathrm{Cl}(X)$ is a \mathbb{Z}-free module of rank 2 with basis \bar{E} and \bar{A}. Since R is a polynomial ring over the base field, we have $\mathrm{Cl}(R)=0$. Therefore the map φ in Theorem 1.1 is not an isomorphism in this case.

For the remainder of this section, we prove Theorem 1.1.
Let H_{1} be the set of reduced and irreducible closed subschemes of X of codimension 1. Put

$$
D_{i}=\sum_{F \in H_{1}} m_{i, F} F
$$

for $i=1, \ldots, r$. Let $\mathcal{O}_{X, F}$ be the local ring of X at F, and let $\mathcal{M}_{X, F}$ be the corresponding maximal ideal. For $F \in H_{1}$, we denote by v_{F} the normalized valuation of the discrete valuation ring $\mathcal{O}_{X, F}$. Then we have

$$
R=\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}}\left\{a \in K \mid v_{F}(a)+\sum_{i} n_{i} m_{i, F} \geq 0 \text { for each } F \in H_{1}\right\} t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} .
$$

Here we set

$$
R_{F}=\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}}\left\{a \in K \mid v_{F}(a)+\sum_{i} n_{i} m_{i, F} \geq 0\right\} t_{1}^{n_{1}} \cdots t_{r}^{n_{r}}
$$

for $F \in H_{1}$. It is easy to see that R_{F} is also a subring of $S=K\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ such that $R \subset R_{F} \subset S$ for any $F \in H_{1}$, and that $R=\cap_{F \in H_{1}} R_{F}$ is satisfied.

Since the local ring $\left(\mathcal{O}_{X, F}, \mathcal{M}_{X, F}\right)$ is a discrete valuation ring, there exists an element $\alpha_{F} \in \mathcal{M}_{X, F}$ such that $\mathcal{M}_{X, F}=\alpha_{F} \mathcal{O}_{X, F}$. By the equality

$$
\left\{a \in K \mid v_{F}(a)+\sum_{i} n_{i} m_{i, F} \geq 0\right\}=\alpha_{F}^{-\sum_{i} n_{i} m_{i, F}} \mathcal{O}_{X, F}
$$

we have

$$
\begin{aligned}
R_{F} & =\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}} \alpha_{F}^{-\sum_{i} n_{i} m_{i, F}} \mathcal{O}_{X, F} t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} \\
& =\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}} \mathcal{O}_{X, F}\left(\alpha_{F}^{-m_{1, F}} t_{1}\right)^{n_{1}} \cdots\left(\alpha_{F}^{-m_{r, F}} t_{r}\right)^{n_{r}} \\
& =\mathcal{O}_{X, F}\left[\left(\alpha_{F}^{-m_{1, F}} t_{1}\right)^{ \pm 1}, \ldots,\left(\alpha_{F}^{-m_{r, F}} t_{r}\right)^{ \pm 1}\right]
\end{aligned}
$$

Therefore, R_{F} is a Noetherian normal domain. We remark that $\alpha_{F} R_{F}$ is the unique homogeneous prime ideal of height 1 of R_{F}. Let $\left\{Q_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of non-homogeneous prime ideals of height 1 of R_{F}. Since R_{F} is a Krull domain,

$$
R_{F}=\left(R_{F}\right)_{\alpha_{F} R_{F}} \bigcap\left(\bigcap_{\lambda \in \Lambda}\left(R_{F}\right)_{Q_{\lambda}}\right)
$$

is satisfied (see Theorem 12.3 in Matsumura [Mat90]). Since $S=R_{F}\left[\alpha_{F}^{-1}\right]$, we have

$$
S=\bigcap_{\lambda \in \Lambda}\left(R_{F}\right)_{Q_{\lambda}}
$$

and

$$
\begin{equation*}
R=\cap_{F \in H_{1}} R_{F}=\left(\bigcap_{F \in H_{1}}\left(R_{F}\right)_{\alpha_{F} R_{F}}\right) \cap S . \tag{2}
\end{equation*}
$$

Here for $F \in H_{1}$, we set $P_{F}=R \cap \alpha_{F} R_{F}$. Then we have

$$
\begin{align*}
P_{F} & =\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}}\left\{a \in K \left\lvert\, \begin{array}{l}
v_{F}(a)+\sum_{i} n_{i} m_{i, F}>0, \text { and } \\
v_{G}(a)+\sum_{i} n_{i} m_{i, G} \geq 0 \text { for each } G \in H_{1}
\end{array}\right.\right\} t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} \\
& =\bigoplus_{n_{1}, \ldots, n_{r} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(\sum_{i} n_{i} D_{i}-F\right)\right) t_{1}^{n_{1}} \cdots t_{r}^{n_{r}} . \tag{3}
\end{align*}
$$

We shall prove that R is a Krull domain. By equation (2), it is enough to show that for any $a \in R \backslash\{0\}, a$ is a unit in $\left(R_{F}\right)_{\alpha_{F} R_{F}}$ except for finitely many F 's. (Here, we remark that $Q(R)$ does not have to coincides with $Q(S)$.) We note that

$$
\alpha_{F}\left(R_{F}\right)_{\alpha_{F} R_{F}} \cap R=\alpha_{F} R_{F} \cap R=P_{F} .
$$

By equation (3) as above, it is easy to see that there exist only finitely many F 's such that a is contained in P_{F}. We have thus proven that R is a Krull domain.

By Theorem 12.3 in Matsumura [Mat90], the set $\left\{P_{F} \mid F \in H_{1}\right\}$ includes the set of homogeneous prime ideals of height 1 of R. Set

$$
H_{1}^{\prime}=\left\{F \in H_{1} \mid \operatorname{ht}_{R} P_{F}=1\right\} .
$$

Thus $\left\{P_{F} \mid F \in H_{1}^{\prime}\right\}$ is the set of homogeneous prime ideals of height 1 of R. (Let E be the divisor given in Remark 2.2. Then, it is easy to see that $\operatorname{ht}_{R} P_{E}=2$. Therefore $E \in H_{1} \backslash H_{1}^{\prime}$ in this case.) By Theorem 12.3 in [Mat90], we have

$$
R=\left(\bigcap_{F \in H_{1}^{\prime}} R_{P_{F}}\right) \cap S
$$

We denote by $\operatorname{Div}(X)$ the group of Weil divisors on X. It is the free abelian group generated by H_{1}. Let $\mathrm{P}(X) \subset \operatorname{Div}(X)$ be the subgroup of principal divisors

$$
\left\{\operatorname{div}_{X}(a) \mid a \in K^{\times}\right\}
$$

where

$$
\operatorname{div}_{X}(a)=\sum_{F \in H_{1}} v_{F}(a) F
$$

By definition, $\mathrm{Cl}(X)$ is the quotient group $\operatorname{Div}(X) / \mathrm{P}(X)$. Let v_{F}^{\prime} be the normalized valuation of the discrete valuation ring $R_{P_{F}}$ for $F \in H_{1}^{\prime}$.

For the remainder of the proof, we assume that $Q(R)$ coincides with $Q(S)$. We remark that $R_{P_{F}}=\left(R_{F}\right)_{\alpha_{F} R_{F}}$ is satisfied for $F \in H_{1}^{\prime}$ since $Q(R)=Q(S)$. We denote by $\operatorname{HDiv}(R)$ the set of homogeneous Weil divisors on R. That is, it is the free abelian group generated by $\left\{P_{F} \mid F \in H_{1}^{\prime}\right\}$. Let $\operatorname{HP}(R) \subset \operatorname{HDiv}(R)$ denote the subgroup generated by
$\left\{\operatorname{div}_{R}(b) \mid b\right.$ is a non-zero homogeneous element of $\left.R\right\}$,
where

$$
\operatorname{div}_{R}(b)=\sum_{F \in H_{1}^{\prime}} v_{F}^{\prime}(b) P_{F} .
$$

Then, it is known that the natural map

$$
\operatorname{HDiv}(R) / \mathrm{HP}(R) \rightarrow \mathrm{Cl}(R)
$$

is an isomorphism (e.g., see Samuel [Sam64]).
Let $\xi: \operatorname{Div}(X) \rightarrow \operatorname{HDiv}(R)$ be the surjective homomorphism given by $\xi(F)=P_{F}$ for $F \in H_{1}^{\prime}$ and $\xi(F)=0$ for $F \in H_{1} \backslash H_{1}^{\prime}$. Consider the following diagram:

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{P}(X) \longrightarrow \begin{array}{c}
\operatorname{Div}(X)
\end{array} \longrightarrow \mathrm{Cl}(X) \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{HP}(R) \longrightarrow \operatorname{HDiv}(R) \longrightarrow \mathrm{Cl}(R) \longrightarrow 0
\end{aligned}
$$

For $F \in H_{1}^{\prime}$ and $a \in K^{\times}, v_{F}(a)=v_{F}^{\prime}(a)$ is satisfied since $R_{P_{F}}=\left(R_{F}\right)_{\alpha_{F} R_{F}}$. Therefore for $a \in K^{\times}$,

$$
\xi\left(\operatorname{div}_{X}(a)\right)=\operatorname{div}_{R}(a)
$$

is satisfied. Hence we have $\xi(\mathrm{P}(X)) \subset \operatorname{HP}(R)$.
By definition, the additive group $\operatorname{HP}(R)$ is generated by

$$
\left\{\operatorname{div}_{R}(a) \mid a \in K^{\times}\right\} \quad \text { and } \quad\left\{\operatorname{div}_{R}\left(t_{i}\right) \mid i=1, \ldots, r\right\}
$$

since $Q(R)=Q(S)$. For $F \in H_{1}^{\prime}$, since $R_{P_{F}}=\left(R_{F}\right)_{\alpha_{F} R_{F}}$ and

$$
R_{F}=\mathcal{O}_{X, F}\left[\left(\alpha_{F}^{-m_{1, F}} t_{1}\right)^{ \pm 1}, \ldots,\left(\alpha_{F}^{-m_{r, F}} t_{r}\right)^{ \pm 1}\right]
$$

$v_{F}^{\prime}\left(\alpha_{F}^{-m_{i, F}} t_{i}\right)=0$ is satisfied. Therefore we have $v_{F}^{\prime}\left(t_{i}\right)=m_{i, F}$. Hence for each i,

$$
\xi\left(D_{i}\right)=\xi\left(\sum_{F \in H_{1}} m_{i, F} F\right)=\sum_{F \in H_{1}^{\prime}} v_{F}^{\prime}\left(t_{i}\right) P_{F}=\operatorname{div}_{R}\left(t_{i}\right)
$$

is satisfied. Since $\operatorname{HP}(R)$ is generated by $\xi(\mathrm{P}(X))$ and $\left\{\xi\left(D_{i}\right) \mid i=1, \ldots, r\right\}$, we have an isomorphism

$$
\begin{aligned}
\mathrm{Cl}(R) & \simeq \operatorname{Div}(X) / \mathrm{P}(X)+\left\langle D_{1}, \ldots, D_{r}\right\rangle+\left\langle F \mid F \in H_{1} \backslash H_{1}^{\prime}\right\rangle \\
& =\operatorname{Cl}(X) /\left\langle\overline{D_{1}}, \ldots, \overline{D_{r}}\right\rangle+\left\langle\bar{F} \mid F \in H_{1} \backslash H_{1}^{\prime}\right\rangle .
\end{aligned}
$$

By this isomorphism, we arrive at the natural surjection

$$
\varphi: \mathrm{Cl}(X) /\left\langle\overline{D_{1}}, \ldots, \overline{D_{r}}\right\rangle \longrightarrow \mathrm{Cl}(R) .
$$

For the rest of this section, we shall prove that φ is an isomorphism if the subgroup $\left\langle D_{1}, \ldots, D_{r}\right\rangle$ of $\operatorname{Div}(X)$ contains an ample divisor. We remark that $Q(R)=Q(S)$ is satisfied in this case. It is enough to show $H_{1}=H_{1}^{\prime}$. In order to show this, we need only show that $R_{P_{F}}=\left(R_{F}\right)_{\alpha_{F} R_{F}}$ for each $F \in H_{1}$. It is sufficient to show $R_{F} \subset R_{P_{F}}$ for each $F \in H_{1}$.

Let f be a homogeneous element of R_{F}. Since R_{F} is a graded ring such that $R \subset R_{F} \subset$ $Q(R)$, it is easy to see that there exist $\alpha, \beta \in K^{\times}$and integers $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r}$ such that

$$
\alpha t_{1}^{p_{1}} \cdots t_{r}^{p_{r}}, \beta t_{1}^{q_{1}} \cdots t_{r}^{q_{r}} \in R \quad \text { and } \quad f=\frac{\beta t_{1}^{q_{1}} \cdots t_{r}^{q_{r}}}{\alpha t_{1}^{p_{1}} \cdots t_{r}^{p_{r}}} \in R_{F}
$$

Thus we have

$$
\begin{aligned}
\operatorname{div}_{X}(\alpha)+\sum_{i} p_{i} D_{i} & \geq 0 \\
\operatorname{div}_{X}(\beta)+\sum_{i} q_{i} D_{i} & \geq 0 \\
v_{F}(\beta / \alpha)+\sum_{i}\left(q_{i}-p_{i}\right) m_{i, F} & \geq 0 .
\end{aligned}
$$

We want to show $f \in R_{P_{F}}$.
If $v_{F}(\alpha)+\sum_{i} p_{i} m_{i, F}=0$, then $\alpha t_{1}^{p_{1}} \cdots t_{r}^{p_{r}} \in R \backslash P_{F}$ is satisfied. Therefore in this case, we have $f \in R_{P_{F}}$.

Assume that $v_{F}(\alpha)+\sum_{i} p_{i} m_{i, F}>0$. Put $p=v_{F}(\alpha)+\sum_{i} p_{i} m_{i, F}$. We remark that $v_{F}(\beta)+\sum_{i} q_{i} m_{i, F} \geq p$. Since $\left\langle D_{1}, \ldots, D_{r}\right\rangle$ contains an ample divisor, there exist $\gamma \in K^{\times}$ and integers s_{1}, \ldots, s_{r} such that

$$
\begin{aligned}
\operatorname{div}_{X}(\gamma)+\sum_{i} s_{i} D_{i}+p F & \geq 0 \\
v_{F}(\gamma)+\sum_{i} s_{i} m_{i, F}+p & =0
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \operatorname{div}_{X}(\beta \gamma)+\sum_{i}\left(q_{i}+s_{i}\right) D_{i} \geq 0 \\
& \operatorname{div}_{X}(\alpha \gamma)+\sum_{i}\left(p_{i}+s_{i}\right) D_{i} \geq 0 \\
& v_{F}(\alpha \gamma)+\sum_{i}\left(p_{i}+s_{i}\right) m_{i, F}=0
\end{aligned}
$$

Therefore we have $\beta \gamma t_{1}^{q_{1}+s_{1}} \cdots t_{r}^{q_{r}+s_{r}} \in R$ and $\alpha \gamma t_{1}^{p_{1}+s_{1}} \cdots t_{r}^{p_{r}+s_{r}} \in R \backslash P_{F}$. Since

$$
f=\frac{\beta t_{1}^{q_{1}} \cdots t_{r}^{q_{r}}}{\alpha t_{1}^{p_{1}} \cdots t_{r}^{p_{r}}}=\frac{\beta \gamma t_{1}^{q_{1}+s_{1}} \cdots t_{r}^{q_{r}+s_{r}}}{\alpha \gamma t_{1}^{p_{1}+s_{1}} \cdots t_{r}^{p_{r}+s_{r}}},
$$

we have $f \in R_{P_{F}}$.
This completes the proof of Theorem 1.1.
Remark 2.3. Yi Hu and Seán Keel [HKe00, Theorem 2.9] proved the following.
Let X be a \mathbb{Q}-factorial projective variety such that $\operatorname{Pic}(X)_{\mathbb{Q}}=\mathrm{N}^{1}(X)$. Then X is a Mori dream space if and only if $\mathrm{TC}(\mathrm{X})$ is finitely generated. If X is a Mori dream space then X is a GIT quotient of $V=\operatorname{spec}(\mathrm{TC}(X))$ by the torus $G=\operatorname{Hom}\left(\mathbb{N}^{r}, \mathbb{G}_{m}\right)$

Here a Mori dream space is a variety with nice geometric properties. For example, the nef cone $\operatorname{Nef}(X)$ is the affine hull of finitely many semi-ample line bundles, and there exist small \mathbb{Q}-factorial modifications of X.

3. Some examples

We give some examples of total coordinate rings in the section.
Example 3.1. It is well known that the divisor class group is a finitely generated free abelian group for a smooth complete toric variety (e.g., see 63p in [Ful93]). Furthermore in this case, Cox [Cox95] proved that $\mathrm{TC}(\mathrm{X})$ is a homogeneous polynomial ring. He called $\mathrm{TC}(\mathrm{X})$ the homogeneous coordinate ring of X.

Remark 3.2. Total coordinate rings have a deep relation with invariant theory as Mukai [Muk01] has shown. Here we present some of his results.

Let \mathbb{P}^{r} be the projective space of dimension r over the field of complex numbers \mathbb{C}. Let X be the blow up of \mathbb{P}^{r} at m distinct points. Then we have $\mathrm{Cl}(X) \simeq \mathbb{Z}^{m+1}$. Assume that the m points are not on any hyperplane in \mathbb{P}^{r}. Then with a suitable linear action of $G=\mathbf{G}_{a}^{m-r-1}$ on a polynomial ring S over \mathbb{C} with $2 m$ variables, the invariant subring S^{G} is isomorphic to $\mathrm{TC}(X)$.

On the other hand, Nagata [Nag61] proved that the effective cone $\operatorname{Eff}(X)$ in $\mathrm{Cl}(X)$ is not finitely generated as a semi-group if X is a blow up of \mathbb{P}^{2} at 9 general points. Therefore, $\mathrm{TC}(X)$ is not Noetherian in this case. It is a counterexample of Hilbert's 14 -th problem.

Mukai also generalized in [Muk02] a result of Dolgachev and realized the root system $T_{p, q, r}$ in the cohomology group of a certain rational variety of Picard number $p+q+r-1$. As
an application he proved that the invariant subring of a tensor product with an actions of Nagata type is infinitely generated if the Weyl group of the corresponding root system $T_{p, q, r}$ is infinite.

Example 3.3. Let p_{1}, \ldots, p_{m} be m points on a projective line contained in the projective r-space \mathbb{P}^{r} over an algebraically closed field k. Then the total coordinate ring $\mathrm{TC}(\mathrm{X})$ of the blow up $X=B l_{p_{1}, \ldots, p_{m}}\left(\mathbb{P}^{r}\right)$ of \mathbb{P}^{r} at $\left\{p_{1}, \ldots, p_{m}\right\}$ is a Noetherian ring.

We give a proof:
Let p_{1}, \ldots, p_{m} be m distinct points in \mathbb{P}^{r}. Let $\pi: X \rightarrow \mathbb{P}^{r}$ be the blow up of \mathbb{P}^{r} at $\left\{p_{1}, \ldots, p_{m}\right\}$. Put $E_{i}=\pi^{-1}\left(p_{i}\right)$ for $i=1, \ldots, m$. Let H be a hyperplane in \mathbb{P}^{r} and put $A=\pi^{-1}(H)$. Then $\mathrm{Cl}(X)$ is a free abelian group with basis $\overline{E_{1}}, \ldots, \overline{E_{m}}, \bar{A}$.

Let $B=k\left[Z_{0}, \ldots, Z_{r}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{r}. We denote by I_{i} the homogeneous prime ideal of B corresponding to the point p_{i}. For $i=1, \ldots, m$ and $s \in \mathbb{Z}$, we define

$$
F_{i s}= \begin{cases}I_{i}^{s} & \text { if } s \geq 0 \\ B & \text { if } s<0\end{cases}
$$

Then we have

$$
\left[F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}\right]_{a}=H^{0}\left(X, \mathcal{O}_{X}\left(a A-b_{1} E_{1}-\cdots-b_{m} E_{m}\right)\right),
$$

where [] $]_{a}$ denotes the homogeneous component of degree a. Therefore we have

$$
\begin{aligned}
\mathrm{TC}(X) & =\bigoplus_{a, b_{1}, \ldots, b_{m} \in \mathbb{Z}} H^{0}\left(X, \mathcal{O}_{X}\left(a A-b_{1} E_{1}-\cdots-b_{m} E_{m}\right)\right) \\
& =\bigoplus_{b_{1}, \ldots, b_{m} \in \mathbb{Z}}\left(F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}\right) T_{1}^{b_{1}} \cdots T_{m}^{b_{m}} \\
& \subset B\left[T_{1}^{ \pm 1}, \ldots, T_{m}^{ \pm m}\right]
\end{aligned}
$$

For the rest of the proof, we assume that $\left\{p_{1}, \ldots, p_{m}\right\}$ lie on a line in \mathbb{P}^{r}. We may assume

$$
\begin{aligned}
I_{1} & =\left(f_{1}, Z_{2}, \ldots, Z_{r}\right) \\
I_{2} & =\left(f_{2}, Z_{2}, \ldots, Z_{r}\right) \\
& \vdots \\
I_{m} & =\left(f_{m}, Z_{2}, \ldots, Z_{r}\right)
\end{aligned}
$$

where $f_{1}, \cdots, f_{m} \in k\left[Z_{0}, Z_{1}\right]$ are linear forms such that any two elements in $\left\{f_{1}, \cdots, f_{m}\right\}$ are linearly independent over k.

Here, for $i=1, \ldots, m$ and $s \in \mathbb{Z}$, we put

$$
f_{i s}= \begin{cases}f_{i}^{s} & \text { if } s \geq 0 \\ 1 & \text { if } s<0\end{cases}
$$

Let g be a polynomial in B. Put

$$
g=\sum_{c_{2}, \ldots, c_{r} \geq 0} g_{c_{2} \cdots c_{r}} Z_{2}^{c_{2}} \cdots Z_{r}^{c_{r}}
$$

where $g_{c_{2} \cdots c_{r}} \in k\left[Z_{0}, Z_{1}\right]$. Then g is contained in $F_{i b_{i}}$ if and only if $g_{c_{2} \cdots c_{r}} \in f_{i, b_{i}-c_{2}-\cdots-c_{r}} k\left[Z_{0}, Z_{1}\right]$ for any integers $c_{2}, \ldots, c_{r} \geq 0$. Here, b_{i} or $b_{i}-c_{2}-\cdots-c_{r}$ are possibly negative. Then g is contained in $F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}$ if and only if $g_{c_{2} \cdots c_{r}} \in f_{i, b_{i}-c_{2}-\cdots-c_{r}} k\left[Z_{0}, Z_{1}\right]$ for any integers $c_{2}, \ldots, c_{r} \geq 0$ and $i=1, \ldots, m$. Furthermore, this is equivalent to

$$
g_{c_{2} \cdots c_{r}} \in f_{1, b_{1}-c_{2}-\cdots-c_{r}} \cdots f_{m, b_{m}-c_{2}-\cdots-c_{r}} k\left[Z_{0}, Z_{1}\right]
$$

 $F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}$ for any $c_{2}, \ldots, c_{r} \geq 0$.

Here we claim that

$$
\begin{equation*}
\mathrm{TC}(X)=B\left[T_{1}^{-1}, \ldots, T_{m}^{-1}, Z_{2} T_{1} \cdots T_{m}, \ldots, Z_{r} T_{1} \cdots T_{m}, f_{1} T_{1}, \ldots, f_{m} T_{m}\right] \tag{4}
\end{equation*}
$$

It is easy to see that the right-hand side is included in the left side. Assume that $g \in$ $F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}$. Then $g T_{1}^{b_{1}} \cdots T_{m}^{b_{m}}$ is contained in the left side. We want to show that the right side also contains it. We may assume that $g=g_{1} Z_{2}^{c_{2}} \cdots Z_{r}^{c_{r}}$, where $g_{1} \in k\left[Z_{0}, Z_{1}\right]$ and c_{1}, \ldots, c_{r} are non-negative integers. Since $g_{1} Z_{2}^{c_{2}} \cdots Z_{r}^{c_{r}} \in F_{1 b_{1}} \cap \cdots \cap F_{m b_{m}}$, we may assume that

$$
g_{1}=g_{2} f_{1, b_{1}-c_{2}-\cdots-c_{r}} \cdots f_{m, b_{m}-c_{2}-\cdots-c_{r}}
$$

where $g_{2} \in k\left[Z_{0}, Z_{1}\right]$. Then

$$
\begin{aligned}
& g T_{1}^{b_{1}} \cdots T_{m}^{b_{m}} \\
= & g_{2} f_{1, b_{1}-c_{2}-\cdots-c_{r}} \cdots f_{m, b_{m}-c_{2}-\cdots-c_{r}} Z_{2}^{c_{2}} \cdots Z_{r}^{c_{r}} T_{1}^{b_{1}} \cdots T_{m}^{b_{m}} \\
= & g_{2}\left(Z_{2} T_{1} \cdots T_{m}\right)^{c_{2}} \cdots\left(Z_{r} T_{1} \cdots T_{m}\right)^{c_{r}} \\
& \times\left(f_{1, b_{1}-c_{2}-\cdots-c_{r}} T_{1}^{b_{1}-c_{2}-\cdots-c_{r}}\right) \cdots\left(f_{m, b_{m}-c_{2}-\cdots-c_{r}} T_{m}^{b_{m}-c_{2}-\cdots-c_{r}}\right) .
\end{aligned}
$$

Here, if $b_{i}-c_{2}-\cdots-c_{r}<0$, then

$$
f_{i, b_{i}-c_{2}-\cdots-c_{r}} T_{i}^{b_{i}-c_{2}-\cdots-c_{r}}=\left(T_{i}^{-1}\right)^{c_{2}+\cdots+c_{r}-b_{i}} .
$$

If $b_{i}-c_{2}-\cdots-c_{r} \geq 0$, then

$$
f_{i, b_{i}-c_{2}-\cdots-c_{r}} T_{i}^{b_{i}-c_{2}-\cdots-c_{r}}=\left(f_{i} T_{i}\right)^{b_{i}-c_{2}-\cdots-c_{r}} .
$$

Thus $g T_{1}^{b_{1}} \cdots T_{m}^{b_{m}}$ is contained in the ring on the right-hand side in (4), and this completes the proof.

Observe that if $m \geq 2$, then we obtain

$$
\begin{aligned}
& B\left[T_{1}^{-1}, \ldots, T_{m}^{-1}, Z_{2} T_{1} \cdots T_{m}, \ldots, Z_{r} T_{1} \cdots T_{m}, f_{1} T_{1}, \ldots, f_{m} T_{m}\right] \\
= & k\left[T_{1}^{-1}, \ldots, T_{m}^{-1}, Z_{2} T_{1} \cdots T_{m}, \ldots, Z_{r} T_{1} \cdots T_{m}, f_{1} T_{1}, \ldots, f_{m} T_{m}\right] .
\end{aligned}
$$

We shall give an example of a normal projective variety with infinitely generated total coordinate ring.

Example 3.4. Let us consider the weighted polynomial ring B_{k} over a field k in three variables x, y, z of degree a, b, c, respectively. Take the weighted projective plane

$$
\mathbb{P}_{k}^{2}(a, b, c)=\operatorname{Proj}\left(B_{k}\right)
$$

and consider the blow up $\pi: X_{k}(a, b, c) \rightarrow \mathbb{P}_{k}^{2}(a, b, c)$ at the smooth point

$$
\mathfrak{p}_{k}(a, b, c):=\operatorname{Ker}(k[x, y, z] \xrightarrow{\varphi} k[t]),
$$

where φ is the homomorphism of k-algebras defined by $\varphi(x)=t^{a}, \varphi(y)=t^{b}$ and $\varphi(z)=t^{c}$. We denote $X_{k}(a, b, c)$ and $\mathfrak{p}_{k}(a, b, c)$ simply by X_{k} and \mathfrak{p}_{k}, respectively. Using intersection theory on X_{k}, Cutkosky [Cut91] studied the finite generation of the symbolic Rees ring $R_{s}\left(\mathfrak{p}_{k}\right)=\oplus_{n \geq 0} \mathfrak{p}_{k}^{(n)} T^{n} \subset B_{k}[T]$. We remark that the total coordinate ring $\mathrm{TC}\left(X_{k}\right)$ is equal to $R_{s}\left(\mathfrak{p}_{k}\right)\left[T^{-\overline{1}}\right]$. Furthermore, $\mathrm{TC}\left(X_{k}\right)$ is Noetherian ring if and only if $R_{s}\left(\mathfrak{p}_{k}\right)$ is.

Assume that $a=7 n-3, b=n(5 n-2), c=8 n-3$ with $n \geq 4$ and $(n, 3)=1$. In this case, the total coordinate ring $\mathrm{TC}\left(X_{k}\right)$ is a Noetherian ring if and only if the characteristic of k is positive (see Goto, Nishida and Watanabe [GNW94]).

References

[BH02] Florian Berchtold and Jürgen Hausen, Homogeneous coordinates for algebraic varieties, AG. 0211413.
[Cox95] David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 3, 17-50.
[Cut91] S. Dale Cutkosky, Symbolic algebras of monomial primes, J. reine angew. Math. 416 (1991), 71-89.
[Eli94] Javier Elizondo, The Euler series of restricted Chow varieties., Compositio Math. 94 (1994), no. 3, 297-310.
[ELF98] E. Javier Elizondo and Paulo Lima-Filho, Euler-chow series and projective bundles formulas, J. Algebraic Geom. 7 (1998), 695-729.
[ES02] E. Javier Elizondo and V. Srinivas, Some remarks on Chow varieties and Euler-Chow series, J. Pure Appl. Algebra 166 (2002), no. 1-2, 67-81.
[Ful93] William Fulton, Introduction to toric varieties, 1st. ed., Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.
[GNW94] Shiro Goto, Koji Nishida, and Kei-ichi Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question, Proc. Amer. Math. Soc. 120 (1994), no. 2.
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
[HKe00] Yi Hu and Seán Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348, Dedicated to William Fulton on the occasion of his 60th birthday.
[Mat90] Hideyuki Matsumura, Commutative ring theory, Cambridge University Press, 1990.
[Muk01] Shigeru Mukai, Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group, www.kurims.kyoto-u.ac.jp, preprint No. 1343, November 2001.
[Muk02] Shigeru Mukai, Geometric realization of T-shaped root system and counterexamples to Hilbert's fourteenth problem., www.kurims.kyoto-u.ac.jp, preprint No. 1372, August 2002.
[Nag61] Masayoshi Nagata, On rational surfaces II., Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271-293.
[Sam64] Pierre Samuel, Lectures on unique factorization domains, Tata Inst.. 1964.

Instituto de Matemáticas, Ciudad Universitaria, UNAM, México, DF 04510, México
E-mail address: javier@math.unam.mx
Department of Mathematics, Meiji University, Higashi-Mita 1-1-1, Tama-ku, Kawasaki 2148571, JAPAN

E-mail address: kurano@math.meiji.ac.jp
Department of Mathematics, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-0045, JAPAN

E-mail address: watanabe@math.chs.nihon-u.ac.jp

[^0]: Partially supported by JSPS-CONACYT, and CONCYT 40531-F.

