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Abstract

We prove that the induced map G0(A) ! G0(Â) by completion is

injective if A is an excellent Noetherian local ring that satis�es one of the

following three conditions; (i) A is henselian, (ii) A is a local ring at the

homogeneous maximal ideal of a homogeneous ring over a �eld, (iii) A has

at most isolated singularity.

1 Introduction

In this paper, we discuss the injectivity of the map G0(A)! G0(Â) induced by

completion A! Â. The problem is closely related to the theory of Roberts rings

as follows.

For a scheme X that is of �nite type over a regular scheme S, we have an

isomorphism of Q -vector spaces

�X=S : G0(X)Q ! A�(X)Q

by the singular Riemann-Roch theorem (Chapter 18 and 20 in Fulton [2]), where

G0(X) (resp. A�(X)) denotes the Grothendieck group of coherent OX-modules

�Both authors are supported in part by the Grants-in-Aid for Scienti�c Research, The Min-

istry of Education, Science and Culture, Japan.
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(resp. Chow group of X). This is the natural generalization of the Grothendieck-

Riemann-Roch theorem to singular schemes. Usually the map �X=S depends not

only on X but also on S (see Section 6).

Let T be a regular local ring and let A be a homomorphic image of T . Since

A is of �nite type over T , we have an isomorphism of Q -vector spaces

�SpecA=Spec T : G0(SpecA)Q ! A�(SpecA)Q

by the singular Riemann-Roch theorem as above. We denote �SpecA=Spec T , G0(SpecA)

and A�(SpecA) simply by �A=T , G0(A) and A�(A), respectively.
The construction of the map �A=T depends not only on A but also on T .

However, if A is a complete local ring or A is essentially of �nite type over either

a �eld or the ring of integers, it is proved in [7] that the map �A=T is independent of

the choice of T . Furthermore, no example is known where the map �A=T actually

depends on the choice of T . It seems natural to consider the following conjecture:

Conjecture 1.1 Let A be a local ring that is a homomorphic image of a regular

local ring T . Then, the Riemann-Roch map �A=T as above is independent of the

choice of T .

In 1985, P. Roberts [14] proved that the vanishing theorem holds for a local

ring A that satis�es �A=T ([A]) 2 AdimA(A)Q , where we say that the vanishing

theorem holds for A if
P

i(�1)
i`A(Tor

A
i (M;N)) = 0 is satis�ed for two �nitely

generated A-modules M and N that satisfy the following three conditions; (1)

both of them have �nite projective dimension, (2) dimM + dimN < dimA,
(3) M 
A N is of �nite length. (This result contains an a�rmative answer to a

conjecture proposed by Serre [16]. The conjecture was independently solved by

Roberts [14], Gillet and Soul�e [3].)

Inspired by the result of Roberts, the second author de�ned the notion of

Roberts rings as below and studied them in [7], [8].

De�nition 1.2 A local ring A is said to be a Roberts ring if there is a regular

local ring T such that A is a homomorphic image of T and �A=T ([A]) 2 AdimA(A)Q
is satis�ed.

By the result of Roberts [14], we know that Roberts rings satisfy the vanishing

theorem.

The category of Roberts rings contains complete intersections, quotient sin-

gularities, and Galois extensions of regular local rings. Normal Roberts rings are

Q -Gorenstein. There are examples of Gorenstein normal non-Roberts rings. If A

is a Roberts ring, then so is the completion Â. (See [7] or Remark 6.1.) Here, we

want to ask the following question:

Question 1.3 Let A be a local ring that is a homomorphic image of a regular

local ring. Assume that the completion Â is a Roberts ring. Then, is A a Roberts

ring, too?
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There is a deep connection between Conjecture 1.1 and Question 1.3. As we

shall see in Proposition 6.2 in Section 6, Question 1.3 is true for any A if and only

if Question 1.4 as below is true for any A. Furthermore, if Question 1.4 is true

for a local ring A, then Conjecture 1.1 is true for the local ring A (see Section 6

(I)).

Question 1.4 Let A be a local ring that is a homomorphic image of a regular

local ring. Then, is the map G0(A)Q
f�
�! G0(Â)Q (induced by the 
at map

A
f
�! Â) injective?

In sections 3, 4 and 5, we shall prove the following theorem that is the main

theorem of the paper.

Theorem 1.5 Let A be a homomorphic image of an excellent regular local ring.

If A satis�es one of the following three conditions, then the natural map G0(A)
f�
�!

G0(Â) is injective;

(i) A is a henselian local ring,

(ii) A = SM , where S = �n�0Sn is a Noetherian positively graded ring over a

henselian local ring (S0; m0), and M = m0S0 + S+ (where S+ = �n>0Sn),

(iii) A has at most an isolated singularity.

The three assertions in Theorem 1.5 will be proved in completely di�erent ways.

In the proof of Claim 4.3 in [7], the injectivity was announced in case (i) as above

without a proof. We shall give a precise proof to Theorem 1.5 in case (i) in

Section 3. In the proof, Popescu-Ogoma's approximation theorem ([11], [12]) is

used. We remark that rings in (i) are contained in those in (ii). In case (ii), we

use a method similar to \deformation to normal cones" in Chapter 5 of Fulton [2].

In case (iii), we use the localization sequence in K-theory due to Thomason and

Trobaugh [18], that is a generalization of the exact sequences constructed by

Quillen [13] or Levine [9].

We shall give some applications of Theorem 1.5 in Section 6. As we shall see

in Proposition 6.5, Question 1.4 is equivalent to the statement that the induced

map G0(A)Q
g�
�! G0(B)Q is injective for any 
at local homomorphism A

g
�! B

such that its extension of the residue class �elds is �nitely generated. If A
g
�! B

is a 
at local homomorphism such that A contains a �eld of characteristic 0, then

the induced map G0(A)Q
g�
�! G0(B)Q is injective if Question 1.4 is true. The

authors have no example of a 
at local homomorphism A ! B such that the

induced map G0(A) �! G0(B) is not injective.
The next section is devoted to preliminaries.

3



2 Preliminaries

Throughout the article, a local ring is always assumed to be a homomorphic

image of a regular local ring. Remark that such rings are universally catenary.

First of all, let us de�ne the Grothendieck group and the Chow group of a

ring A.

De�nition 2.1 For a ring A, let G0(A) be the Grothendieck group of �nitely

generated A-modules, i.e.,

G0(A) =

L
M : a �nitely generated A-molule

Z � [M ]

h[M ]� [L]� [N ] j 0! L!M ! N ! 0 is exacti
:

Let Ai(A) be the i-th Chow group of A, i.e.,

Ai(A) =

L
P2SpecA; dimA=P=i

Z � [SpecA=P ]

hdiv(Q; x) j Q 2 SpecA, dimA=Q = i+ 1, x 2 A nQi
;

where

div(Q; x) =
X

P2MinAA=(Q;x)

`AP (AP=(Q; x)AP )[SpecA=P ];

where `AP ( ) denotes the length as an AP -module. The Chow group of A is de�ned

to be A�(A) = �
dimA
i=0 Ai(A).

For an abelian group M , MQ denotes M 
ZQ .

De�nition 2.2 (1) Let g : A ! B be a 
at ring homomorphism. Then, we

have the induced homomorphism g� : G0(A)! G0(B) de�ned by g�([M ]) =

[M 
A B].

(2) Let (A;m) be a local ring and Â denotes the completion of A in the m-

adic topology. For each i, the natural map A
f
�! Â induces the map

Ai(A)
f�
�! Ai(Â) de�ned by

f�([SpecA=P ]) =
X
p

`Âp
(Âp=P Âp)[Spec Â=p];

where the sum is taken over all minimal prime ideals p of Â=P Â as an

Â-module. Here, remark that Â=P Â = [A=P is equi-dimensional since A is

universally catenary (Theorem 31.7 in Matsumura [10]). See Remark 6.4

for induced maps by general 
at local homomorphisms.

4



Remark 2.3 Assume that A is a d-dimensional excellent normal local ring. Then

Â is also normal and the natural map Cl(A) ! Cl(Â) is injective, where Cl(A)

is the divisor class group of A.
On the other hand, it is well known that Ad�1(A) coincides with Cl(A). Thus,

we know that f� : Ad�1(A) ! Ad�1(Â) is injective if A is an excellent normal

ring of dimension d.

Then, we have the following:

Proposition 2.4 Let A be a local ring. Then, the following conditions are equiv-

alent;

1. G0(A)Q
f�
�! G0(Â)Q is injective,

2. Ai(A)Q
f�
�! Ai(Â)Q is injective for all i.

Proof. Take a regular local ring T such that A is a homomorphic image of

T . Then, by the singular Riemann-Roch theorem, we have isomorphisms of Q -

vector spaces �A=T : G0(A)Q ! A�(A)Q and �Â=T̂ : G0(Â)Q ! A�(Â)Q such that

the following diagram is commutative (Lemma 4.1 (c) in [7]):

G0(A)Q
�A=T
�! A�(A)Q

f� # # f�

G0(Â)Q
�
Â=T̂

�! A�(Â)Q

(2.5)

Here f� : A�(A)Q ! A�(Â)Q is the direct sum of ff� : Ai(A)Q ! Ai(Â)Q j
i = 0; 1; : : : ; dimAg. Therefore we know immediately that two conditions in the

proposition are equivalent. q.e.d.

By the proposition, Question 1.4 is a natural generalization of the injectivity

of divisor class groups (Remark 2.3) in a sense. In Proposition 6.2, we shall know

that Question 1.4 is true if and only if AdimA�1(A)Q ! AdimA�1(Â)Q is injective

for any reduced equi-dimensional local ring A.

3 The proof of Theorem 1.5 in the case of (i)

We shall prove the injectivity of G0(A)
f�
�! G0(Â) in the case where A is a

henselian local ring in the section.

By the assumption, there is an excellent regular local ring T such that A is

a homomorphic image of T . Replacing T with its henselization, we may asuume

that T is an excellent henselian regular local ring. Set A = T=I for an ideal I of

T .

Before proving theorem, we need some preliminaries.

The key point of the proof is to apply the following Popescu-Ogoma's approx-

imation theorem [11], [12]:
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Theorem 3.1 Let s and t be positive integers. Let (R; n) be an excellent henselian

local ring. Consider the polynomial ring R[X1; : : : ; Xt] with variables X1, . . . , Xt.

Let f1; : : : ; fs be polynomials in R[X1; : : : ; Xt]. If there are elements a1, . . . , at
of the n-adic completion R̂ that satisfy

f1(a1; : : : ; at) = � � � = fs(a1; : : : ; at) = 0 in R̂;

then there exist elements b1, . . . , bt of R that satisfy

f1(b1; : : : ; bt) = � � � = fs(b1; : : : ; bt) = 0 in R:

If a1; : : : ; at satisfy

f1(a1; : : : ; at) = � � � = fs(a1; : : : ; at) = 0;

we say that a1; : : : ; at is a solution of the polynomial equations f1 = � � � = fs = 0.

The following lemma will play an essential role in the proof of Theorem 1.5

in the case of (i):

Lemma 3.2 Let T be a regular local ring and T̂ denotes its completion. Let

0 �! T̂ rn
(anij )
�! T̂ rn�1

(an�1;i;j )
�! � � �

(a2ij )
�! T̂ r1

(a1ij )
�! T̂ r0(3.3)

be an exact sequence of free T̂ -modules, where (akij) is an rk�1 � rk matrix with

entries in T̂ . Then there exist variables fAkij j k; i; jg corresponding to fakij j

k; i; jg, some variables Y1; : : : ; Yt, and polynomials

f1; : : : ; fs 2 T [fAkij j k; i; jg; Y1; : : : ; Yt]

which satisfy the following two conditions:

(a) There are elements y1; : : : ; yt of T̂ such that fakij j k; i; jg; y1; : : : ; yt is a

solution of f1 = � � � = fs = 0.

(b) Let fbkij j k; i; jg; z1; : : : ; zt be elements in T . If fbkij j k; i; jg; z1; : : : ; zt is

a solution of f1 = � � � = fs = 0, then the sequence of T -linear maps

0 �! T rn
(bnij )
�! T rn�1

(bn�1;i;j )
�! � � �

(b2ij )
�! T r1

(b1ij )
�! T r0

is exact

Proof. Since the sequence (3.3) is a chain complex, fakij j k; i; jg is a solution of

the polynomial equations

rk�1X
q=1

Ak�1;i;qAkqj = 0 (8k; i; j):
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If a system of elements fbkij j k; i; jg in T is a solution of the equations as above,

then the sequence

0 �! T rn
(bnij )
�! T rn�1

(bn�1;i;j )
�! � � �

(b2ij )
�! T r1

(b1ij )
�! T r0(3.4)

is a chain complex of T -linear maps. We shall argue when it is exact.

Put

ek = rk � rk+1 + rk+2 � � � �

for each k > 0, where we consider rm = 0 if m > n. Remark that each ek is a

non-negative integer for k = 1; : : : ; n since the sequence (3.3) is exact. Thanks

to a theorem of Buchsbaum-Eisenbud [1], the complex (3.4) is exact if and only

if the following two conditions are satis�ed;

1. the rank of the matrix (bkij) is equal to ek for k = 1; : : : ; n,

2. the grade of the ideal Iek((bkij)) of T is at least k for k = 1; : : : ; n, where
Iek((bkij)) denotes the ideal generated by all the ek�ek minors of the matrix

(bkij). Here, we think that the grade of I0((bkij)) is in�nity.

It is easy to see that there are polynomials such that, if fbkij j k; i; jg is a
solution of the polynomial equations, then the rank of the matrix (bkij) is at most

ek for each k.

Therefore we have only to �nd polynomials to keep grade high. Remark that

the grade of an ideal coincides with the height of it, because T is a regular local

ring. Then, by Lemma 3.7 in [5], we can �nd polynomials with coe�cients in T

which preserve height of ideals. q.e.d.

Now we start to prove Theorem 1.5 (i).

Assume that � 2 G0(A) satis�es f�(�) = 0. We want to show � = 0. There

are �nitely generated A-modulesM andN such that � = [M ]�[N ]. By de�nition,

f�(�) = [M 
A Â] � [N 
A Â]. Therefore, [M 
A Â] = [N 
A Â] is satis�ed in

G0(Â). Under the situation, we want to prove [M ] = [N ] in G0(A).

The category of �nitely generated Â-modules must contain some short exact

sequences which give the relation [M 
A Â] = [N 
A Â] in G0(Â). For example,

if there are short exact sequences

0!M 
A Â! L1 ! L2 ! 0

0! L2 ! L1 ! N 
A Â! 0
(3.5)

of �nitely generated Â-modules, then

[M 
A Â] = [L1]� [L2] = [N 
A Â] in G0(Â)

is satis�ed.
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For the simplicity, we assume that there exist short exact sequences as in

(3.5). (The general case would be proved in completely the same way.)

Let F: and G : be �nite T -free resolutions of M and N , respectively. Since

there are short exact sequences as in (3.5), we have exact sequences of chain

complexes of free T̂ -modules

0! F: 
T T̂ ! P̂:! R̂ :! 0

0! Ŝ:! Q̂ :! G : 
T T̂ ! 0;
(3.6)

where both P̂: and Q̂ : are �nite T̂ -free resolutions of L1, and both R̂ : and Ŝ: are

�nite T̂ -free resolutions of L2. In particular,

P̂:, Q̂ :, R̂ : and Ŝ: are �nite free resolutions.(3.7)

Furthermore, there exist exact sequences of chain complexes of free T̂ -modules

0! T̂:! P̂:! Q̂ :! Û:! 0

0! V̂:! R̂ :! Ŝ:! Ŵ :! 0
(3.8)

such that

T̂:, Û:, V̂: and Ŵ : are bounded split exact sequences.(3.9)

Using Lemma 3.2, we know that there is a set of polynomial equations with

coe�cients in T that preserves conditions (3.6), (3.7), (3.8) and (3.9). Since

H0(P̂:), H0(Q̂ :), H0(R̂ :) and H0(Ŝ:) are Â = T̂ =IT̂ -modules,

H0(P̂:), H0(Q̂ :), H0(R̂ :) and H0(Ŝ:) are annihilated by I.(3.10)

It is easy to see that there is a set of polynomial equations with coe�cients in T
that preserves the condition (3.10).

The polynomial equations which we found as above has a solution in T̂ . Then,

appplying Popescu-Ogoma's approximation theorem (see Theorem 3.1), the set

of polynomial equations has a solution in T , because T is an excellent henselian

local ring. Then we have exact sequences of �nite T -free resolutions

0! F: ! P:! R: ! 0

0! S:! Q : ! G : ! 0

0! T: ! P:! Q : ! U: ! 0

0! V: ! R: ! S:! W : ! 0

(3.11)

such that

� T:, U:, V: and W : are split exact,

� H0(P:), H0(Q :), H0(R:) and H0(S:) are annihilated by I, and
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� P:, Q :, R: and S: are �nite T -free resolutions of H0(P:), H0(Q :), H0(R:) and

H0(S:), respectively.

Then, by the �rst two exact sequences in (3.11), we have exact sequences of

A-modules as
0!M ! H0(P:)! H0(R:) ! 0

0! H0(S:)! H0(Q :) ! N ! 0:

Furthermore, by the last two exact sequences in (3.11), we know that H0(P:)

(resp. H0(R:)) is ismomorphic to H0(Q :) (resp. H0(S:)) as a T -module. Since

modules are annihilated by I, they are isomorphisms as A-modules.

Hence, we have

[M ] = [H0(P:)] � [H0(R:)] = [H0(Q :)] � [H0(S:)] = [N ]

in G0(A).
We have completed the proof of Theorem 1.5 (i).

4 The proof of Theorem 1.5 in the case of (ii)

We shall prove Theorem 1.5 in the case of (ii) in the section.

Put A = SM , where S = �n�0Sn is a Noetherian positively graded ring over

a henselian local ring (S0; m0), and M = m0S0 + S+.

Put B =
Q

n�0 Sn. It is the S+A-adic completion of A. Here, B is 
at over

A and Â = B̂ is satis�ed. Let g : A ! B denote the natural map. Since A
is an excellent local ring, so is B by Theorem 3 in Rotthaus [15]. Furthermore,

since S0 is a henselian local ring, so is B. Since B is an excellent henselian local

ring, G0(B) ! G0(B̂) = G0(Â) is injective by (i) in Theorem 1.5. Therefore,

in order to show the injectivity of G0(A) ! G0(Â), we have only to prove that

G0(A)! G0(B) is injective.
Put

Fi =

�
(�n�iSn)A if i � 0

A if i < 0:

Then, F = fFigi2Z is a �ltration of ideals of A, that is, it satis�es the following

three conditions; (1) Fi � Fi+1 for any i 2 Z, (2) F0 = A, (3) FiFj � Fi+j for

any i; j 2 Z. Similarly put

F̂i =

� Q
n�i Sn if i � 0

B if i < 0:

Then, F̂ = fF̂igi2Z is a �ltration of ideals of B. Remark that F̂i coincides with
FiB = Fi 
A B for each i. Put

R(F ) = �i2ZFit
i
� A[t; t�1]

9



G(F ) = R(F )=t�1R(F ) = �i�0Fi=Fi+1

R(F̂ ) = �i2ZF̂it
i
� B[t; t�1]

G(F̂ ) = R(F̂ )=t�1R(F̂ ) = �i�0F̂i=F̂i+1;

where t is an indeterminate. Remark that R(F )
AB = R(F̂ ), G(F )
AB = G(F̂ )
and S = G(F ) = G(F̂ ).

Flat homomorphisms A
�
�! A[t; t�1] and R(F )

�
�! R(F )[(t�1)�1] = A[t; t�1]

induce the maps G0(A)
��
�! G0(A[t; t

�1]) and G0(R(F ))
��
�! G0(A[t; t

�1]), respec-

tively (see De�nition 2.2). Since the natural projection R(F )


�! G(F ) is �nite,

we have the induced map G0(G(F ))

�

�! G0(R(F )) de�ned by 
�([M ]) = [M ] for

each �nitely generated G(F )-module M . Thus we have the following diagram:

G0(A)

�� #

G0(G(F ))

�

�! G0(R(F ))
��
�! G0(A[t; t

�1]) �! 0

It is known that the horizontal sequence in the above diagram is exact. We refer

the basic facts on algebraic K-theory to Quillen [13] or Srinivas [17]. (The hori-

zontal exact sequence is called the localization sequence induced by a localization

of a category.)

On the other hand, we have a map 
� : G0(R(F )) ! G0(G(F )) satisfying


�([N ]) = [N=t�1N ] � [0 :N t�1] for each �nitely generated R(F )-module N . It

is easy to see 
�

� = 0. Hence, we obtain the induced map 
� : G0(A[t; t

�1]) !

G0(G(F )) that satis�es 
��� = 
� because of the exactness of the localization

sequence. It is easy to see that, for an ideal I of A,


���([A=I]) =

"M
i�0

Fi

Fi \ I + Fi+1

#
(4.1)

is satis�ed.

Similarly we have the diagram

G0(B)
�̂� #

G0(G(F̂ ))

̂�

�! G0(R(F̂ ))
�̂�
�! G0(B[t; t

�1]) �! 0


̂� #

G0(G(F̂ ))

and the induced map 
̂� : G0(B[t; t
�1])! G0(G(F̂ )).

Let h : S ! A be the localization. Put g1 = 1
g : A[t; t�1]! A[t; t�1]
AB =

B[t; t�1] and g2 = 1 
 g : G(F ) ! G(F ) 
A B = G(F̂ ). Remark that g2 is an

isomorphism.
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Then we have the following commutative diagram:

G0(S)
h�
�! G0(A)

��
�! G0(A[t; t

�1])

�
�! G0(G(F ))

# g� # g1� # g2�

G0(B)
�̂�
�! G0(B[t; t

�1])

̂�
�! G0(G(F̂ )) = G0(S)

We denote by ' : G0(S)! G0(S) the composite map as above.

We need to show the following claim:

Claim 4.2 ' is the identity map.

We shall �nish the proof of Theorem 1.5 (ii).

Is is easy to see that h� is surjective since h is a localization. Then, by the

claim, we know that h� is an isomorphism and g� : G0(A)! G0(B) is injective.

Proof of Claim 4.2. It is easily veri�ed that G0(S) is generated by

f[S=P ] j P is a homogeneous prime ideal of Sg:

Therefore, we have only to show '([S=P ]) = [S=P ] for any homogeneous prime

ideal P of S. Put P = �i�0Pi. Then we have

'([S=P ]) = 
���h�([S=P ]) = 
���([A=PA])

=

"M
i�0

Fi

Fi \ PA+ Fi+1

#
=

"M
i�0

Si=Pi

#
= [S=P ] :

(The third equality is obtained by the equality (4.1) as above.)

We have completed the proof in the case (ii).

5 The proof of Theorem 1.5 in the case of (iii)

We shall prove Theorem 1.5 in the case of (iii) in the section.

It is enough to show the following claim:

Claim 5.1 Let A be a Noetherian local ring and let I be an ideal of A. Let

B be the I-adic completion of A. Assume that both SpecA n (SpecA=I) and

SpecB n (SpecB=IB) are regular schemes. Then, the induced map G0(A) !

G0(B) is injective.

Remark that, if A is an excellent local ring of isolated singularity, then Â is also

isolated singularity. Therefore, applying the claim, G0(A)! G0(Â) is proved to

be injective in the case.

Now we start to prove Claim 5.1.
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We put X = SpecA, Y = SpecA=I, U = X n Y , X̂ = SpecB, Ŷ =

SpecB=IB, Û = X̂ n Ŷ . Then the natural map Ŷ ! Y is an isomorphism

and we have the following �bre squares:

Ŷ �! X̂  � Û

k # #

Y �! X  � U

If U is empty, the assertion is obvious. Suppose that U is not empty.

We have the following commutative diagram:

G1(X)
p
�! G1(U) �! G0(Y ) �! G0(X) �! G0(U) �! 0

# # r # s # t # u

G1(X̂)
q
�! G1(Û) �! G0(Ŷ ) �! G0(X̂) �! G0(Û) �! 0

Here, for a scheme W , Gi(W ) denotes the i-th K-group of the exact category

of coherent OW -modules. Horizontal sequences are exact (see Quillen [13] or

Srinivas [17]). Vertical maps are induced by 
at morphisms.

We denote by C (resp. Ĉ) the cokernel of p (resp. q). Let v : C ! Ĉ be the

induced map by r. In order to prove the injectivity of t : G0(X) ! G0(X̂), we

have only to show the following;

� u : G0(U)! G0(Û) is injective,

� v : C ! Ĉ is surjective.

(Recall that s : G0(Y )! G0(Ŷ ) is an isomorphism.)

On the other hand, thanks to Thomason and Trobaugh [18], we have the

localization sequence in K-theory, that is, we have the following commutative

diagram:

K1(X)
p0

! K1(U) ! K0(X on Y ) ! K0(X)
�
! K0(U) ! K�1(X on Y )

# # r0 # s0 # t0 # u0 # w0

K1(X̂)
q0

! K1(Û) ! K0(X̂ on Ŷ ) ! K0(X̂)
�
! K0(Û) ! K�1(X̂ on Ŷ )

Here, for a scheme W , Ki(W ) denotes the i-th K-group of the exact category

of locally free OW -modules of �nite rank. We denote by Ki(X on Y ) the i-th

K-group of the derived category of perfect OX -complexes with support in Y .

By Thomason and Trobaugh [18], horizontal sequences in the above diagram are

exact.

Let W be a scheme. Then, by de�nition, we have the natural map �W :

Ki(W ) ! Gi(W ) for each i � 0. Furthermore, �W is an isomorphism for each

i � 0 if W is a regular scheme (see 27p in Quillen [13]).

12



We have the following commutative diagram:

K0(U)
�U
�! G0(U)

u0 # # u

K0(Û)
�
Û
�! G0(Û)

Since both of U and Û are regular schemes, both of �U and �Û are isomorphisms.

Thus, u is injective if and only if so is u0.

On the other hand, since X̂ ! X is a 
at map with Y = Ŷ , we know that

the natural map Ki(X on Y ) ! Ki(X̂ on Ŷ ) is an isomorphism for each i 2 Z

by Theorem 7.1 in Thomason and Trobaugh [18]. In particular, s0 and w0 are

isomorphisms. Furthermore, since A and B are local rings, we have K0(X) =

K0(X̂) = Z and t0 is an isomorphism. Since neither U nor Û is empty, both �

and � are injective. Therefore, u0 is injective.

Since � and � are injective, the cokernel of p0 (resp. q0) coincides with K0(X on Y )
(resp. K0(X̂ on Ŷ )). Since s0 is an isomorphism, we have

K1(Û) = Im(q0) + Im(r0);(5.2)

where Im( ) denotes the image of the given map. On the other hand, we have

the following commutative diagram:

K1(U)

# r0 & �U

K1(X̂)
q0

�! K1(Û) G1(U)

& �
X̂

& �
Û

# r

G1(X̂)
q
�! G1(Û)

Since Û is a regular scheme, �Û is an isomorphism. By (5.2), we immediately

obtain

G1(Û) = Im(q) + Im(r):

Therefore, the map v : C ! Ĉ is surjective. We have completed the proof of

Theorem 1.5.

Remark 5.3 If a local ring satis�es one of (i), (ii) and (iii) in Theorem 1.5, we

know, by Proposition 2.4, that Ai(A)Q
f�
�! Ai(Â)Q is injective for all i.

If a local ring satis�es either (i) or (ii) in Theorem 1.5, we can prove that

Ai(A)
f�
�! Ai(Â) is injective for all i using the same method as in the proof of

Theorem 1.5.
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6 Applications

We shall give applications of Theorem 1.5 in the section.

Recall that local rings are assumed to be homomorphic images of regular local

rings throughout the paper. Therefore, remark that they are universally catenary.

(I) Let X be a scheme of �nite type over a regular scheme S. Then, the singular

Riemann-Roch theorem says that there exists an isomorphism of Q -vector spaces

�X=S : G0(X)Q �! A�(X)Q

satisfying several good properties (Chapter 18 in Fulton [2]). Remark that the

construction of the map �X=S depends not only on X but also on S.

In fact, there are examples that the map �X=S actually depends on the choice of

a regular base scheme S. Let k be an arbitrary �eld. Put X = P1k and S = Spec k.

Then, we have �X=X(OX) = [X] by the construction of �X=X . On the other hand,

by Hirzebruch-Riemann-Roch theorem, we obtain �X=S(OX) = [X] + �(OX)[t],
where t is a rational point of X. It is well known that �(OX) = 1 and [t] 6= 0 in

A�(P
1
k)Q .

Let T be a regular local ring and let A be a homomorphic image of T . Then,
by the singular Riemann-Roch theorem as above, we have an isomorphism of

Q -vector spaces

�A=T : G0(A)Q �! A�(A)Q

determined by both of A and T .

It seems to be natural to consider Conjecture 1.1. In fact, for many important

local rings, the conjecture is true. (Conjecture 1.1 is a�rmatively solved in [7] if

A is a complete local ring or A is essentially of �nite type over either a �eld or

the ring of integers.)

Look at the diagram (2.5). The bottom of the diagram (2.5) is indepen-

dent of the choice of T̂ since Â is complete. Therefore, if vertical maps in the

diagram (2.5) are injective, �A=T is independent of the choice of T . Hence, if

Question 1.4 is true for a local ring A, then Conjecture 1.1 is true for the local

ring A.

In particular, Conjecture 1.1 is true for a local ring A that satis�es one of the

three conditions in Theorem 1.5.

(II) Let A and T be rings as above and put d = dimA. Set

�A=T ([A]) = �d + �d�1 + � � �+ �0; (�i 2 Ai(A)Q):

These �i's satisfy interesting properties as follows (see Proposition 3.1 in [8]):

(a) If A is a Cohen-Macaulay ring, then

�A=T ([!A]) = �d � �d�1 + �d�2 � � � �+ (�1)i�d�i + � � �

is satis�ed, where !A denotes the canonical module of A.
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(b) If A is a Gorenstein ring, then we have �d�i = 0 for each odd i.

(c) If A is a complete intersection, then we have �i = 0 for i < d.

(d) We have �d 6= 0, since �d is equal to [SpecA]d, where

[SpecA]d =
X

P2SpecA
dimA=P=d

`AP (AP )[SpecA=P ] 2 Ad(A)Q :

(e) Assume that A is normal. Let cl(!A) 2 Cl(A) be the isomorphism class

containing !A. Then, we have �d�1 = cl(!A)=2 in Ad�1(A)Q = Cl(A)Q .

We de�ne the notion of Roberts rings as in De�nition 1.2.

The category of Roberts rings contains complete intersections (see (c) as

above), quotient singularities and Galois extensions of regular local rings. There

are examples of Gorenstein non-Roberts rings. (It is proved in [6] that

k[xij j i = 1; : : : ; m ; j = 1; : : : ; n](fxijg)

It(xij)

is a Roberts ring if and only if it is a complete intersection. Therefore, ifm = n >

2, the ring is a Gorenstein ring that is not a Roberts ring.) In 1985, P. Roberts [14]

proved that the vanishing property of intersection multiplicity is satis�ed for

Roberts rings. We refer the reader to basic facts and examples of Roberts rings

to [7] and [8].

Remark 6.1 By the diagram (2.5), we immediately obtain that, if A is a Roberts

ring, then so is the completion Â. (By the commutativity of the diagram (2.5),

we have �Â=T̂ ([Â]) = f�(�A=T ([A])). Remark that the map A�(A)Q
f�
�! A�(Â)Q in

the diagram (2.5) is graded.)

On the other hand, assume that Â is a Roberts ring. As in (I), the Riemann-

Roch map �Â=S is independent of a regular local ring S. Hence, we may assume

�Â=T̂ ([Â]) 2 AdimA(Â)Q . Therefore, if f� is injective, then A is a Roberts ring, too.

In a sense, the converse is also true as we shall see in the following proposition.

We give some equivalent conditions to Question 1.4.

Proposition 6.2 All local rings are assumed to be homomorphic images of ex-

cellent regular local rings. Then, the following conditions are equivalent:

(1) The induced map G0(A)Q ! G0(Â)Q is injective for any local ring A, that
is, Question 1.4 is true.

(2) The induced map AdimA�1(A)Q ! Adim Â�1(Â)Q is injective for any reduced

equi-dimensional local ring A.

15



(3) For any local ring A, A is a Roberts ring if so is Â. (That is to say,

Question 1.3 is true.)

Proof. We have already seen in Proposition 2.4 and Remark 6.1 that the condi-

tion (1) implies both of (2) and (3).

We �rst prove (2) =) (1). Let hA denote the henselization of A. Since hA! Â

induces the injection G0(
hA)Q ! G0(Â)Q by Theorem 1.5 (i), it is su�cient to

show the injectivity of g� : G0(A)Q ! G0(
hA)Q . It is equvalent to the injectivity

of g� : A�(A)Q ! A�(
hA)Q since the diagram

G0(A)Q
�A=T
�! A�(A)Q

g� # # g�

G0(
hA)Q

�hA=hT
�! A�(

hA)Q

is commutative by Lemma 4.1 (c) in [7]. Let P1, . . . , Ps be prime ideals of A

of coheight l, and let n1, . . . , nr be integers such that g�(
P

i ni[SpecA=Pi]) = 0,

where
P

i ni[SpecA=Pi] denotes the image of
P

i ni[SpecA=Pi] in Al(A)Q . We

want to prove
P

i ni[SpecA=Pi] = 0 in Al(A)Q . We may assume l < dimA.
There are prime ideals Q1, . . . , Qt of

hA of coheight l + 1, elements aj 2
hA nQj

for j = 1; : : : ; t, and integers b 6= 0, b1, . . . , bt such that

b
X
i

ni[Spec
hA=Pi

hA] =
X
j

bjdiv(Qj; aj):

On the other hand, dimA=(Qj \ A) = l + 1 holds for each j, since any �bre

of a henselization has dimension 0. Set I = (Q1 \ A) \ � � � \ (Qt \ A) and

g0 : A=I ! hA=IhA. We may assume that I is contained in all of Pi's. Then we

have g0
�
(
P

i ni[SpecA=Pi]) = 0. Since the diagram

Al(A)Q
g�
�! Al(

hA)Q
" "

Al(A=I)Q
g0
�

�! Al(
hA=IhA)Q

is commutative, we have only to show that g0
�
is injective. Here, vertical maps of

the diagram are induced by proper morphisms SpecA=I ! SpecA and Spec hA=IhA!
Spec hA. Remark that hA=IhA coincides with the henselization of A=I. Replacing

A=I with A, it is su�cient to show that, for a reduced equi-dimensional local ring

A, the map AdimA�1(A)Q ! AdimhA�1(
hA)Q is injective. Since AdimA�1(A)Q !

Adim Â�1(Â)Q is injective by (2), so is AdimA�1(A)Q ! AdimhA�1(
hA)Q .

Next we shall prove (3) =) (2). Assume that AdimA�1(A)Q
f�
�! Adim Â�1(Â)Q

is not injective for an equi-dimensional local ring A. Let c be a non-zero element

of AdimA�1(A)Q such that f�(c) = 0. Put d = dimA. Since �A=T : G0(A)Q !
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A�(A)Q is an isomorphism, there exist �nitely generated A-modules M and N

with dimension less than d such that

�A=T

�
[M ]� [N ]

n

�
= c� (�d�1 + �d�2 + � � �+ �0)

for some positive integer n. Since A is equi-dimensional, we may assume that

[N ] = 0. Let B denote the idealization A n (An�1 � M). Then we have the

following commutative diagram of isomorphisms:

G0(B)Q
�B=T
�! A�(B)Q

# # �

G0(A)Q
�A=T
�! A�(A)Q

Here, vertical maps are induced by the proper map SpecB ! SpecA. Then we

have

��B=T ([B]) = �A=T ([B]) = �A=T (n[A] + [M ]) = n�d + nc:

Hence B is not a Roberts ring since � is a graded isomorphism. On the other

hand, we have the following commutative diagram

A�(B)Q


�! A�(B̂)Q

� # # �

A�(A)Q
f�
�! A�(Â)Q

where � is the map induced by the proper morphism Spec B̂ ! Spec Â. Using

Lemma 4.1 (c) in [7], we have 
�B=T ([B]) = �B̂=T̂ ([B̂]). Therefore, we have

��B̂=T̂ ([B̂]) = �
�B=T ([B]) = f���B=T ([B]) = f�(n�d + nc) = nf�(�d) 2 Ad(Â)Q :

We have �B̂=T̂ ([B̂]) 2 Ad(B̂)Q since � is a graded isomorphism. Hence, B̂ is a

Roberts ring. q.e.d.

We give some remarks.

Remark 6.3 Note that the henselization hA of a Noetherian local ring A is the

direct limit of rings B as below. Therefore, in completely the same way as

the proof of Proposition 6.2, it will be proved that, under the same situation,

the following conditions are also equivalent to the conditions (1), (2) and (3) in

Propostion 6.2:

(4) Let (A;m) be a reduced equi-dimensional local ring. Let n be a positive

integer and let a1, . . . , an be elements in A. Assume that an 2 m and

an�1 62 m. Put B = A[x](m;x)=(x
n + a1x

n�1 + � � � + an), where x is a

variable. Then, for any rings A and B that satisfy the assumption as

above, the induced map G0(A)Q ! G0(B)Q is injective.
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(5) For any rings A and B that satisfy the same assumption as in (4), the

induced map AdimA�1(A)Q ! AdimB�1(B)Q is injective.

(6) For any rings A and B that satisfy the same assumption as in (4), A is a

Roberts ring if so is B.

(7) Let (A;m) be a reduced equi-dimensional local ring. Let n be a positive

integer and let a1, . . . , an be elements in A. Assume that an 2 m and

an�1 62 m. Let h(x) be in A[x] such that h(0) 62 m, where x is a variable.

Put C = A[x; h(x)�1]=(xn+a1x
n�1+ � � �+an). Then, for any rings A and C

that satisfy the assumption as above, the induced map G0(A)Q ! G0(C)Q
is injective.

Remark 6.4 Let f : (A;m)! (B; n) be a 
at local homomorphism of Noethe-

rian local rings.

For an ideal I of A, set

[SpecA=I] =
X

P2AsshAA=I

`AP (AP=IAP )[SpecA=P ];

where AsshAA=I = fP 2 MinAA=I j dimA=P = dimA=Ig. Then, we ob-

tain a graded morphism f� : A�(A) ! A�(B) de�ned by f�([SpecA=Q]) =

[SpecB=QB].
If B=PB is equi-dimensional for any minimal prime ideal P of A, then B=QB

is equi-dimensional for any prime ideal Q of A. In the case, f� satis�es

f�([SpecA=Q]) =
X
q

`Bq
(Bq=QBq)[SpecB=q];

where the sum is taken over all minimal prime ideals of B=QB.

If the closed �bre B=mB is Cohen-Macaulay, then B=QB is equi-dimensional

for any prime ideal Q of A. It is easily veri�ed since all �bres are Cohen-Macaulay

if so is the closed �bre (that is proved using Macaulay�cation due to Kawasaki [4]).

We remark that 
at local homomorphisms in (2) and (5) in Proposition 6.2 and

Remark 6.3 satisfy the condition.

For a local ring (A;m), we set As = A[x1; : : : ; xs]mA[x1;:::;xs], where x1; : : : ; xs
are variables.

Proposition 6.5 Let f : (A;m) ! (B; n) be a 
at local homomorphism of

Noetherian local rings.

(a) Assume that B=n is �nitely generated over A=m as a �eld and G0(As)Q !

G0(cAs)Q is injective for s = tr:degA=mB=n, that is the transcendence degree

of B=n over A=m. Then, both f� : G0(A)Q ! G0(B)Q and f� : A�(A)Q !

A�(B)Q are injective.
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(b) Suppose that A contains a �eld of characteristic 0. If Question 1.4 is true

for any local ring, then both f� : G0(A)Q ! G0(B)Q and f� : A�(A)Q !

A�(B)Q are injective.

Proof. We shall only prove the injectivity of the maps between Grothendieck

groups. The injectivity of the maps between Chow groups will be proved in

completely the same way.

First we shall prove (a). Take t1; : : : ; ts 2 B such that t1; : : : ; ts 2 B=n is a

transcendence basis over A=m. Consider the homomorphisms

A
g
�! D = A[x1; : : : ; xs]mA[x1;:::;xs]

h
�! B;

where h is de�ned by h(xi) = ti for each i. By the local 
atness criterion (e.g.,

Theorem 22.3 in [10]), we know that h is 
at. Since f = hg, we have f� = h�g�.
We shall prove that both g� and h� are injective.

We �rst prove that g� is injective. We may assume s = 1. We have only to

prove that a 
at map A ! A[x; p(x)�1] induces the injective map G0(A)Q !

G0(A[x; p(x)
�1])Q for p(x) 2 A[x] nmA[x]. Take a monic polynomial q(x) 2 A[x]

of positive degree such that p(x) and q(x) (in (A=m)[x]) are relatively prime.

Since (p(x); q(x); m)A[x] = A[x], p(x) is a unit in A[x]=(q(x)). Therefore,

A[x; p(x)�1]=(q(x)) = A[x]=(q(x))(6.6)

is satis�ed. The commutative diagram

A �! A[x; p(x)�1]
& #

A[x; p(x)�1]=(q(x))

induces the following commutative diagram:

G0(A)Q �! G0(A[x; p(x)
�1])Q

& #

G0(A[x; p(x)
�1]=(q(x)))Q

Here, the vertical map sends [M ] to [M=q(x)M ]� [0 :M q(x)] for each �nitely gen-

erated A[x; p(x)�1]-module M . Since A[x; p(x)�1]=(q(x)) is a �nitely generated

A-free module by (6.6), the map G0(A)Q ! G0(A[x; p(x)
�1]=(q(x)))Q is injective.

Hence G0(A)Q ! G0(A[x; p(x)
�1])Q is injective.

We next prove that h� is injective. Remark that (D;P ) ! (B; n) is a 
at

local homomorphism such that B=n is a �nite algebraic extension of D=P . Since

G0(D)Q ! G0(D̂)Q is injective, we may assume that both D and B are complete.

We shall prove the following claim:

Claim 6.7 Let h : (D;P ) ! (B; n) be a 
at local homomorphism of complete

local rings such that B=n is a �nite algebraic extension of D=P . Then, the induced

map h� : G0(D)Q ! G0(B)Q is injective.
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Take q1; : : : ; qt 2 n such that the image q1; : : : ; qt is a system of parameters of

B=PB. Put B0 = B=(q1; : : : ; qt). Let � : G0(B)Q ! G0(B
0)Q be a map de�ned

by �([M ]) =
P

i(�1)
i[Hi(K :
BM)], where K : is the Koszul complex over B with

respect to q1; : : : ; qt. Remark that h0 : D ! B0 is �nite, because D is complete.

We have a map h0� : G0(B
0)Q ! G0(D)Q de�ned by h0�([M ]) = [M ].

We denote by � the composite map of

G0(D)Q
h�
�! G0(B)Q

�
�! G0(B

0)Q
h0�

�! G0(D)Q:

We have only to prove that the composite map is an isomorphism. It is enough

to show that, for any prime ideal Q of D,

�([D=Q])
= [B=n : D=P ]e(q1;:::;qt)(B=PB) � [D=Q] + (lower dimensional terms)

(6.8)

is satis�ed, where e(q1;:::;qt)(B=PB) denotes the multiplicity of B=PB with respect

to (q1; : : : ; qt).
We now start to verify the equality as above. Replacing D=Q by D, we may

assume that D is an integral domain and Q = 0. Let p1; : : : ; pd be a system

of parameters of D, and L: denotes the Koszul complex over D with respect to

p1; : : : ; pd. Let � : G0(D)Q ! Q be a map de�ned by �([M ]) =
P

i(�1)
i[Hi(L:
D

M)]. Then, we have

��([D]) = [B=n : D=P ]e(p1;:::;pd;q1;:::;qt)(B)

= [B=n : D=P ]e(p1;:::;pd)(D)e(q1;:::;qt)(B=PB):

Since �([M ]) = rankDM � e(p1;:::;pd)(D), the equality (6.8) is proved. We have

completed the proof of (a).

We next prove (b). We may assume that both A and B are complete. Since

A contains a �eld of characteristic 0, we can take a coe�cient �eld K (resp. L)
of A (resp. B) such that K � L. Let M be an intermediate �eld such that L is

algebraic over M and M is purely transcendental over K. Set

A = K[[y1; : : : ; yt]]=I:

Put

C =M [[y1; : : : ; yt]]=IM [[y1; : : : ; yt]] and D = L[[y1; : : : ; yt]]=IL[[y1; : : : ; yt]]:

Then we have 
at local homomorphisms

A
g
�! C

h
�! D

r
�! B

such that f = rhg. We shall prove that g�, h� and r� are injective.

The injectivity of r� follows from Claim 6.7.
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Next we prove that h� is injective. It is easy to see that h coincides with the

composite map of

C
h1
�! C 
M L

h2
�! D:

It is easily veri�ed that C
ML is a Noetherian local ring and D is the completion

of C 
M L. Since we are assuming that Question 1.4 is true, h2� is injective.

Since L is a direct limit of �nite algebraic extensions M 0 over M , C 
M L is a

direct limit of rings CM 0 = M 0[[y1; : : : ; yt]]=IM
0[[y1; : : : ; yt]]. Since CM 0 is �nitely

generated free C-module, the map G0(C)Q ! G0(CM 0)Q is injective. Therefore

h1� is injective.
Next we prove that g� is injective. Let ft� j � 2 �g be a transcendence basis

of M over K suth that M = K(ft� j � 2 �g). Set

E = A[t� j � 2 �]mA[t�j�2�]:

It is easy to see that g coincides with the composite map of

A
g1
�! E

g2
�! C:

It is easy to see that E is a Noetherian local ring and C is the completion of

E. Since we are assuming that Question 1.4 is true, g2� is injective. It is easy

to see that E is the direct limit of rings As = A[t1; : : : ; ts]mA[t1;:::;ts]. As we have

seen in the proof of (a), the map G0(A)Q ! G0(As)Q is injective. Hence, g1� is
injective. q.e.d.

Using Theorem 1.5 and Proposition 6.5, the following Corollary is immediately

proved:

Corollary 6.9 Let (A;m) ! (B; n) be a 
at local homomorphism of excellent

local rings. Assume that A has at most isolated singularity.

1. If B=n is �nitely generated over A=m, then G0(A)Q ! G0(B)Q and A�(A)Q !

A�(B)Q are injective.

2. If A contains a �eld of characteristic 0, then G0(A)Q ! G0(B)Q and

A�(A)Q ! A�(B)Q are injective.

Let (A;m)! (B; n) be a 
at local homomorphism with closed �bre F . Then,
we can prove the following:

� If B is a Roberts ring, then so is F .

� Even if both A and F are Roberts rings, B is not necessary so.

It is natural to ask equivalence between the Robertsness of A and that of B under

some strong assumption on F .
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Proposition 6.10 Let f : (A;m) ! (B; n) be a 
at local homomorphism of

Noetherian local rings such that B=n is �nitely generated over A=m as a �eld.

(a) Suppose that B=n is separable over A=m and B=mB is a complete intersec-

tion. Assume that G0(B)Q ! G0(B̂)Q is injective. Then, if A is a Roberts

ring, so is B.

(b) Suppose that B=mB is Cohen-Macaulay. Assume that G0(As)Q ! G0(cAs)Q
is injective for s = tr:degA=mB=n. Then, if B is a Roberts ring, so is A.

We omit a proof of the proposition as above. Using Theorem 1.5, we imme-

diately obtain the following corollary:

Corollary 6.11 Let f : (A;m)! (B; n) be a 
at local homomorphism of Noethe-

rian local rings.

1. Suppose that B=n is a �nitely generated separable extension over A=m and

B=mB is a complete intersection. Assume that G0(As)Q ! G0(cAs)Q and

G0(B)Q ! G0(B̂)Q are injective for s = tr:degA=mB=n. Then, A is a

Roberts ring if and only if so is B.

2. Suppose that both A and B are excellent and f is �etale essentially of �nite

type. Assume that A has at most isolated singularity. Then, A is a Roberts

ring if and only if so is B.
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