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Abstract

Let A be a Notherian ring graded by a �nitely generated Abelian group G. It

is shown that a Chow group A
.
(A) of A is determined by cycles and a rational

equivalence with respect to certain G-graded ideals of A. In particular, A
.
(A) is

isomorphic to the equivariant Chow group of A if G is torsion free.
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1 Introduction

In this paper, we study a Chow group of a Noetherian ring graded by a �nitely generated

Abelian group and prove that a Chow group of such a graded ring is determined by its

cycles and rational equivalence of graded objects. For certain varieties, it had been proved

by Fulton, MacPherson, Sottile and Sturmfels[2]. Precisely speaking, their result is stated

that a Chow group of a variety (over C ) with an action of a connected solvable linear

algebraic group is isomorphic to its equivariant Chow group. The aim of this paper is to

give an elementary proof to a similar statement for a Chow group of a graded ring. We do

not have to assume that the given ring contains a �eld.

Let G be a �nitely generated Abelian group (not necessary torsion free) and A =L
g2G

Ag be a Noetherian G-graded ring. We call that a G-graded ideal p � A is a

G-prime ideal, if every homogeneous nonzero element of A=p is a nonzero divisor. If G is

torsion free, then a G-prime ideal is actually a prime ideal. Otherwise a G-prime ideal is

not necessary a prime ideal and these ideals involve much information. We de�ne a group

AG
.
(A) = ZG

.
(A)=RatG

.
(A), where ZG

.
(A) is the free Abelian group generated by [A=p] for

all G-prime ideal p and RatG
.
(A) is a subgroup of ZG

.
(A) which is a graded analogue of

rational equivalence determined by homogeneous elements and G-prime ideals (see (2.5)).

Then our main result is stated as follows.
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Theorem 1.1 Put W = fP 2 Spec(A) j P 2 MinA(A=p) for some G-prime ideal pg �
Spec(A). If G �= Zm�T with jT j <1, then there is the natural map ' : AG

.
(A) �! A

.
(A)

satisfying following conditions.

(1) A
.
(A) is generated by f[A=P ] j P 2 Wg.

(2) jT jKer(') = (0).

In particular, AG
.
(A) is isomorphic to A

.
(A) via ' if G is torsion free.

Example 3.4 shows that the map ' in Theorem 1.1 is not always an isomorphism.

2 De�nition of AG
.

(A)

Let A be a Noetherian ring essentially of �nite type over a regular domain R. We treat a

Chow group of A using relative dimension instead of the usual Krull dimension (Chap. 20 in

Fulton[1]). Relative dimension dimR(A=P ) is de�ned as dimR(A=P ) = tr:deg(k(P )=k(R \
P ))�htR(R\P ) for each P 2 Spec(A). Note that dimR(A=P ) = dimR(A=Q)+htA=P (Q=P )

for P � Q 2 Spec(A). If S is a multiplicatively closed subset of A with S \ P = � for

P 2 Spec(A), then we have dimR(S
�1A=PS�1A) = dimR(A=P ). For a �nitely generated

A-module M , we set

dimR(M) = supfdimR(A=P ) j P 2 SuppA(M)g
AsshR(M) = fP 2 Supp

A
(M) j dimR(M) = dimR(A=P )g:

The i-th cycles Zi(A) of A is the free Abelian group generated by [A=P ] for all P 2
Spec(A) with dimR(A=P ) = i. Rati(A) is the subgroup of Zi(A) generated by divA(Q; a)

for every Q 2 Spec(A) with dimR(A=Q) = i+ 1 and for every a 2 A nQ, where

divA(Q; a) =
X

P2MinA(A=(a;Q))

`AP (AP=(a;Q)AP )[A=P ]:

If no confusion is possible, we denote divA(Q; a) simply by div(Q; a). The i-th Chow group

Ai(A) is de�ned to be the quotient group Zi(A)=Rati(A). We de�ne the Chow group

(resp. cycles, rational equivalence) of A by A
.
(A) = �i2ZAi(A) (resp. Z.

(A) = �i2ZZi(A),
Rat

.
(A) = �i2ZRati(A)).

The aim of this section is to de�ne a similar notion to Chow groups for graded rings and

to de�ne the natural map from this group to the ordinary Chow group. Let (G;+) be a

�nitely generated Abelian group. We say that a ring A is a G-graded ring, if there exists

a family fAggg2G of subgroups of A such that A =
L

g2G
Ag and AgAh � Ag+h for every
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g; h 2 G. Similarly, a G-graded A-module is an A-module M with a family fMggg2G of

subgroups of M such that M =
L

g2G
Mg and AgMh � Mg+h for every g; h 2 G. The

subgroup Mg is called the component of M of degree g. An element x 2Mg n f0g is called
a homogeneous element of degree g and we write as deg x = g.

Throughout the paper, we assume that A is a Noetherian G-graded ring such that A0

is an R-algebra and A is essentially of �nite type over R, where R is assumed to be an

excellent regular domain.

De�nition 2.1 AG-graded ideal p of A is said to be aG-prime ideal, if every homogeneous

nonzero element of A=p is not a divisor of zero. We denote the set of all G-prime ideals by

SpecG(A).

Remark 2.2 If G is torsion free, then G-prime ideals are nothing but G-graded prime

ideals and SpecG(A) � Spec(A). However, if G has torsion, then G-prime ideals are

not necessary prime ideals. For example, put A = Q [X]=(X2 � 1). We consider A as

a Z=(2)-graded ring by degX = �1 2 Z=(2). Then A has no graded prime ideals, but

SpecG(A) = f(0)g. G-prime ideals have a lot of information on G-graded rings and G-

graded modules. they play roles of prime ideals in the category of G-graded rings (and the

category of G-graded modules). See, for example, [4], [5].

Let p � A be a G-prime ideal and let M be a G-graded A-module. We de�ne a homoge-

neous localizationM(p) of M at p by M(p) = S�1M , where S is the set of all homogeneous

elements of A n p. We de�ne a G-graded module M(g) by M(g) = M as the underlying

A-modules, that is graded by M(g)h =Mg+h for h 2 G.
For an ideal P � A, we put P � =

L
g2G

P \Ag the maximal graded ideal contained in P .

If P is a prime ideal, then P � is a G-prime ideal. Conversely, if p 2 SpecG(A), then P � = p

is satis�ed for every P 2 AssA(A=p) since any nonzero homogeneous element of A=p is

not a zero divisor and, therefore, SpecG(A) = fP � j P 2 Spec(A)g. Furthermore, we have

AssA(A=p) = MinA(A=p) since A(p)=pA(p) is G-simple. (Note that AssA(p)
(A(p)=pA(p)) =

MinA(p)
(A(p)=pA(p)) is satis�ed since A(p)=pA(p) is G-simple that will be de�ned in (2.6).)

We put SuppG
A
(M) = fp 2 SpecG(A) j M(p) 6= 0g and denote by MinG

A
(M) (resp.

AsshG
R
(M)) the set of minimal G-prime ideals in SuppG

A
(M) (resp. the set of G-prime ide-

als p 2 SuppG
A
(M) with dimR(M) = dimR(A=p)). Note that P 2 Supp

A
(M) is equivalent to

P � 2 SuppG
A
(M). For a G-graded A-moduleM , M has a �nite �ltration (0) =M0 � M1 �

� � � �Mn =M of G-graded submodules of M with Mi+1=Mi
�= A=pi(gi) for some G-prime

ideal pi and for some gi 2 G. Note that SuppGA(M) = fp 2 SpecG(A) j p � pi for some ig
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and MinG
A
(M) � fp1; � � � ; png. If G is torsion free, then MinG

A
(M) = MinA(M) and

AsshG
R
(M) = AsshR(M).

De�nition 2.3 We denote by ZG
i
(A) the free Abelian group with basis [A=p] consisting of

all G-prime ideals p such that dimR(A=p) = i. The G-cycles ZG
.
(A) of A is de�ned to be

the direct sum of ZG
i
(A) for all i.

For p 2 MinG
A
(M), `G

A(p)
(M(p)) denotes the length of the maximal chain of G-graded

submodules of M(p). It is easy to see that `G
A(p)

(M(p)) is equal to `Ap
(Mp), if G is torsion

free. We put [M ] =
P

p2AsshGR(M) `
G

A(p)
(M(p)) [A=p] 2 ZGdimR(M)(A).

De�nition 2.4 Suppose p 2 SpecG(A) and let a 2 A n p be a homogeneous element. We

put

divG(p; a) =
X

q2MinGA(A=(a;p))

`G
A(q)

(A(q)=(a; p)A(q)) [A=q] :

We de�ne RatG
i
(A) to be the subgroup of ZG

.
(A) generated by divG(p; a) for every p 2

SpecG(A) with dimR(A=p) = i + 1 and for every homogeneous element a 2 A n p. We put

RatG
.
(A) =

P
i2Z

RatG
i
(A) � ZG

.
(A) and call it the G-rational equivalence of A.

Later, we will see divG(p; a) 2 ZG
i
(A) if dimR(A=p) = i + 1 (Lemma 2.10). Hence we

have RatG
i
(A) � ZG

i
(A) for each i and RatG

.
(A) =

L
i2Z

RatG
i
(A) � ZG

.
(A).

De�nition 2.5 The i-th G-Chow group of A is de�ned by AG

i
(A) = ZG

i
(A)=RatG

i
(A). We

de�ne the G-Chow group of A to be AG
.
(A) =

L
i2Z

AG

i
(A) = ZG

.
(A)=RatG

.
(A).

In order to compare AG
.
(A) with A

.
(A), we need some lemmas on relative dimension of

graded objects.

De�nition-Proposition 2.6 ((1.6) in [4]) A G-graded ring A is said to be G-simple, if A

has no proper G-graded ideal. If A is G-simple and G0 = fg 2 G j Ag 6= 0g, then A0 is a

�eld and A is ismorphic to a twisted group ring At

0[G
0] of G0 over the �eld A0. It is proved

in [4] that any G-simple ring is complete intersection.
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Now, we have the following relative dimension formula for G-prime ideals.

Lemma 2.7 Let p 2 SpecG(A) and P 2 Spec(A) with P � = p. Then we have

dimR(A=P ) = dimR(A=p)� dimAP=pAP :

Particularly, dimR(A=p) = dimR(A=Q) is satis�ed for all Q 2 AssA(A=p), i.e. AsshR(A=p)

= AssA(A=p) holds.

Proof. We put K = [A(p)=pA(p)]0 and G(p) = fg 2 G j [A(p)=pA(p)]g 6= 0g. Then we

have

dimR(A=P ) = tr:deg(k(P )=K) + tr:deg(K=k(R \ p0))� htR(R \ p0)
= dim(Kt[G(p)]=PKt[G(p)]) + tr:deg(K=k(R \ p0))� htR(R \ p0)
= dim(A(p)=PA(p)) + tr:deg(K=k(R \ p0))� htR(R \ p0)

If Q 2 AssA(A=p), then dimA(p)=QA(p) = dimA(p)=pA(p) by (2.6). Hence we have

dimR(A=p)� dimR(A=P ) = dimA(p)=pA(p) � dimA(p)=PA(p) = dimAP=pAP :

2

Corollary 2.8 For p; q 2 SpecG(A) with p � q, if we put r = dimR(A=p) � dimR(A=q),

then there exists a saturated chain p = p0 ( p1 ( � � � ( pr = q of G-prime ideals.

Proof. By (2.7), we have r = htA=p(q=p). If r > 0, then there is a homogeneous element

a 2 q such that a 62 p. Since a is not a zero divisor of A=p, we have p1 2 MinG
A
(A=(a; p))

with p1 � q and htA=p1(q=p1) = r � 1. The assertion is proved by induction on r. 2

Lemma 2.9 (1) MinA(M) =
`

p2MinGA(M) AssA(A=p).

(2) AsshR(M) =
`

p2AsshGR(M)AssA(A=p).

Proof. (1) It is easy to see
`

p2MinGA(M)AssA(A=p) =
S
p2MinGA(M) AssA(A=p), since

AssA(A=p) \ AssA(A=q) = � for p = q. Take P 2 MinA(M). Since P 2 SuppA(M),

we know p := P � 2 SuppG
A
(M). If q is a minimal G-prime ideal of M contained in p,

then q � P . Since AssA(A=q) � Supp
A
(M), we have P 2 MinA(A=q) = AssA(A=q)

and q = P � = p. Thus MinA(M) � S
p2MinGA(M)AssA(A=p) is satis�ed. Conversely, take
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p 2 MinG
A
(M) and P 2 AssA(A=p). If Q 2 MinA(M) with Q � P , then Q� 2 MinG

A
(M) as

above. We have Q� � P � = p and, by the minimality of p, Q� = p is satis�ed. Since P is

a minimal prime ideal of A=p, we have Q = P . This completes the proof of (1).

(2) Take P 2 MinA(M) and put p := P �. Then P 2 AsshR(M) if and only if

dimR(A=P ) = dimR(M). On the other hand, by (2.7), we have dimR(A=P ) = dimR(A=p).

Hence P 2 AsshR(M) i� p 2 AsshG
R
(M). 2

Lemma 2.10 Take p 2 SpecG(A) and a homogeneous element a 2 A n p. Then we have

the following.

(1) AsshG
R
(A=(a; p)) = MinG

A
(A=(a; p)) and AsshR(A=(a; p)) = MinA(A=(a; p)) are satis-

�ed.

(2) dimR(A=q) = dimR(A=p) � 1 for each q 2 MinG
A
(A=(a; p)), and dimR(A=Q) =

dimR(A=p)�1 for each Q 2 MinA(A=(a; p)) are satis�ed.

Proof. The assertion (1) follows from the assertion (2).

(2) Let q 2 MinG
A
(A=(a; p)) and Q 2 AssA(A=q). Remark that, by (2.9), Q is a minimal

prime ideal of A=(a; p). If P 2 AssA(A=p) with Q � P , then Q is a minimal prime

ideal of A=(a; P ). Indeed, if we assume Q1 2 MinA(A=(a; P )) such that Q � Q1, then

q = Q� � Q�
1 � (a; P )� � (a; p). Then, by the minimality of q, we have q = Q� = Q�

1

and, by the minimality of Q, we have Q = Q1. Since P � = p, we have a 62 P and

dimR(A=q) = dimR(A=Q) = dimR(A=P )� htA=P (Q=P ) = dimR(A=p)� 1. This completes

the proof of Lemma. 2

Now we de�ne a group homomorphism from ZG
.
(A) to Z

.
(A) as follows;

' : ZG
.
(A) �! Z

.
(A)

[A=p] 7�! P
P2AssA(A=p)

`AP (AP=pAP )[A=P ]:

Then, by (2.7), ' is a graded group homomorphism, namely, '(ZG
i
(A)) � Zi(A) for each i.

Sometimes, we consider that ZG
.
(A) is a subgroup of Z

.
(A) via ' since ' is injective. Take

p 2 SpecG(A) and a 2 S
g2G

Ag n p. By (2.10), we have

'(divG(p; a))

=
P

q2MinGA(A=(a;p))
`G
A(q)

(A(q)=(a; p)A(q))'([A=q])

=
P

q2MinGA(A=(a;p))

P
Q2AssA(A=q)

`G
A(q)

(A(q)=(a; p)A(q))`AQ(AQ=qAQ)[A=Q]

=
P

q2MinGA(A=(a;p))

P
Q2AssA(A=q)

`AQ(AQ=(a; p)AQ)[A=Q]

=
P

Q2MinA(A=(a;p))
`AQ(AQ=(a; p)AQ)[A=Q]

=
P

Q2AsshR(A=(a;p))
`AQ(AQ=(a; p)AQ)[A=Q]

= [A=(a; p)] :
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Then [A=(a; p)] belongs to Rat
.
(A), since a is a nonzero divisor of A=p ((1.2.2) of [6]).

Hence ' induces a graded group homomorphism ' : AG
.
(A) �! A

.
(A). Henceforth we call

this ' the natural homomorphism from AG
.
(A) to A

.
(A).

In the same way as ordinary Chow groups, we have the following. (See, for example Ch.

1 of [6].)

Lemma 2.11 (1) If f : A �! B is a at G-graded ring homomorphism that is essen-

tially of �nite type of relative dimension k, then the map ZG
i
(A)

f��! ZG
i+k(B) that

sends [A=p] to [B=pB] induces a map of G-Chow groups AG

i
(A)

f��! AG

i+k(B).

(2) Let S be a multiplicatively closed subset of A consisting of homogeneous elements. Let

ZG
.
(S;A) denote the subgroup of ZG

.
(A) generated by all [A=p] such that p \ S 6= �.

Then the inclusion ZG
.
(S;A) ,! ZG

.
(A) induces an exact sequence

ZG
.
(S;A) �! AG

.
(A) �! AG

.
(S�1A) �! 0:

(3) A module �nite G-graded ring homomorphism g : A �! B induces the map g� :

AG
.
(B) �! AG

.
(A) such that g�([B=P]) = `G

A(p)
(B(P)=PB(P))[A=p], where p = A\P.

(Note that dimR(B=P) = dimR(A=A \P) for P 2 SpecG(B).)

2

The following lemma is an easy consequence of (2.11) which will be used in the proof of

the main result.

Lemma 2.12 Let A[x] be a polynomial ring over A. We regard A[x] as a G-graded ring

by deg(x) = g for some g 2 G. Then we have an isomorphism AG
.
(A[x])

�=�! AG
.
(A[x; x�1])

induced by A[x] �! A[x; x�1].

Proof. By (2.11), (2), it is enough to show that AG
.
(A[x]) �! AG

.
(A[x; x�1]) is injective.

By (2.11), (2), the kernel of this map is generated by G-cycles [A[x]=P] such that x 2 P.
For each such P, there is a G-prime ideal p � A such that P = (p; x)A[x] and [A[x]=P] =

divG(pA[x]; x). Hence we have [A[x]=P] = 0 in AG
.
(A[x]). This completes the proof of

Lemma 2.12. 2
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3 Proof of Theorem 1.1

Proof of (1). Take P 2 Spec(A) with dimAP=P
�AP = d. We shall prove that [A=P ] 2

A
.
(A) comes from Z

.
(W ) by induction on d. Note that the image of Z

.
(W ) coincides with

Z
.
(W )=Z

.
(W )\Rat

.
(A). Suppose d > 0 and put Y = W \Spec(A=P �). Then the diagram

Z.(W )

Z.(W )\Rat.(A)
,! A

.
(A)

" 	 "
Z.(Y )

Z.(Y )\Rat.(A=P �)
,! A

.
(A=P �)

is commutative. To prove our assertion, it is enough to show that [A=P ] is contained

in Z
.
(Y )=Z

.
(Y ) \ Rat

.
(A=P �). Thus we may assume P � = (0), (namely, any nonzero

homogeneous elements are nonzero divisors). Consider the localization sequence

ZdimR(A=P )(S;A) �! AdimR(A=P )(A) �! AdimR(A=P )(A(0))! 0

where S is the set of all nonzero homogeneous elements of A. Since A(0) is G-simple

(or A(0) is a twisted group ring over the �eld [A(0)]0), A.
(A(0)) �= AdimR(A(0))(A(0)) =

AdimR(A)(A(0)) is satis�ed. On the other hand, we have dimR(A) > dimR(A=P ) since

d = dimAP = dimR(A)� dimR(A=P ) > 0. Hence [A=P ] is rationally equivalent to a cycleP
s
ns[A=Ps] such that dimR(A=Ps) = dimR(A=P ) and Ps contains a nonzero homogeneous

element for each s. Since P �
s
6= 0 and dimR(A=P

�
s
) < dimR(A), we have dimAPs=P

�
s
APs =

dimR(A=P
�
s
)�dimR(A=Ps) < dimR(A)�dimR(A=P ) = d. Then, by induction hypothesis,

[A=Ps] is in Z
.
(W )=Z

.
(W ) \ Rat

.
(A) for each s and so is [A=P ]. 2

Remark 3.1 If G is torsion free, then a G-prime ideal is a G-graded prime ideal and

SpecG(A) = W � Spec(A). Hence A
.
(A) is generated by cycles [A=p] such that p 2

SpecG(A). Therefore ' is surjective.

To prove the statement (2), we need some lemmas.

Lemma 3.2 Suppose that G is torsion free and put dimR(A) = d. Then ' : AG

d�1(A) �!
Ad�1(A) is an isomorphism.

Proof. By (1.1), (1), it is enough to show that ' is injective.

First, we assume that A is an itegral domain and denote by �A the normalization of A.

Note that �A is a G-graded ring since G is torsion free, and the inclusion i : A ,! �A is �nite
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since A is excellent. Consider the following commutative diagram

0 0

# #
ZG
d�1(

�A)
i��! ZG

d�1(A)
' # #'

Zd�1( �A)
i��! Zd�1(A):

By the de�nition of the map i� (cf. (2.11), (3)), we have Rat
G

d�1(A) = i�(Rat
G

d�1(
�A)) and

Ratd�1(A) = i�(Ratd�1( �A)) (cf. Prop 1.4. of [1]). Now, we show that Ratd�1(A)\ZGd�1(A) �
RatG

d�1(A). Let D 2 Ratd�1(A) \ ZGd�1(A). If we denote by D =
P

r

i=1 divA((0); ai), then

D =
P

r

i=1 divA((0); ai) =
P

r

i=1 i�(div �A((0); ai)) = i�(div �A((0);
Q

i
ai)). Hence there is

an element a of the quotient �eld of A such that D = divA((0); a) = i�(div �A((0); a)). Put

div �A((0); a) =
P

i
ni
�
�A=Pi

�
with Pi 6= Pj for i 6= j. Assume that Pi is not a G-graded prime

ideal for some i and put Q = A\Pi. Then the prime idealQ is not G-graded. Since QA(0) is

prime and �A � A(0), Pi is the unique prime ideal lying over Q. Thus the coe�cient of [A=Q]

in D is also ni. On the other hand, D is a linear combination of cycles corresponding to G-

graded prime ideals of A since D 2 ZG
.
(A). Therefore, we have ni = 0 for each non graded

prime ideal Pi and div �A((0); a) 2 ZG
.
( �A). Once Ratd�1( �A)\ZGd�1( �A) � RatG

d�1(
�A) is proved,

then we have D 2 i�(RatGd�1( �A)) = RatG
d�1(A). Hence we may assume that A is normal.

Since ZG
d�1(A) (resp. Zd�1(A)) is the group of G-graded divisorial ideals (resp. divisorial

ideal) and RatG
d�1(A) (resp. Ratd�1(A)) is the group of G-graded principal divisors (resp.

principal divisors), our problem is described in terms of ideal theory. Namely, if I � A(0)

is a G-graded divisorial ideal (i.e. a divisorial ideal and a G-graded A-submodule of A(0))

such that I is isomorphic to a principal divisor of A, then there exists a G-homogeneous

element x of A(0) such that I = Ax. Indeed, if a G-graded fractional ideal I � A(0) is

principal, it must be generated by a homogeneous element since G is torsion free.

Now, we prove the assertion in general. Let L be the kernel of
L

p2MinA(A)
ZG
d�1(A=p) �!

ZG
d�1(A). Note that MinA(A) = MinG

A
(A), since G is torsion free, and

L
p2MinA(A)

ZG
d�1(A=p)

�! ZG
d�1(A) is surjective. For q 2 MinA(A) and a G-cycle C 2 ZG

d�1(A=q), Cq denotes the

element in
L

p2MinA(A)
ZG
d�1(A=p) where component corresponding to ZG

d�1(A=p) is C (resp.

0) if p is equal to q (resp. otherwise). Then L is generated by elements [A=q]
p
� [A=q]

p0

such that dimR(A=q) = d � 1 and q � p [ p0 for p; p0 2 AsshR(A) with p 6= p0. Similarly,

we denote by L0 the kernel of
L

p2MinA(A)
Zd�1(A=p) �! Zd�1(A) and, for q 2 MinA(A)

and C 0 2 Zd�1(A=p), C
0
q denotes the element in

L
p2MinA(A)

Zd�1(A=p) where component

corresponding to Zd�1(A=p) is C
0 (resp. 0) if p is equal to q (resp. otherwise). Then L0 is

also generated by elements [A=Q]
p
�[A=Q]

p0
such that dimR(A=Q) = d�1, p; p0 2 AsshR(A)

with p 6= p0 and Q � p [ p0.

9



Claim. The natural map L �! L0 is an isomorphism.

Proof of Claim. Take Q 2 Spec(A) such that dimR(A=Q) = d�1 and Q � p[p0 for some

p; p0 2 AsshR(A) with p 6= p0. Suppose that Q is not homogeneous. Since Q� is a prime

ideal that is properly contained in Q and dimR(A=Q) = d � 1, we have Q� 2 AsshR(A).

On the other hand, Q� is the maximal G-graded ideal contained in Q and, thus, Q� � p; p0.

This implies Q� = p = p0 and contradicts to p 6= p0. Hence Q is homogeneous. The

surjectivity of L �! L0 is proved. The injectivity is easy. The proof of Claim is completed.

We put �L = L=L \L
p2AsshR(A)

RatG
d�1(A=p) and

�L0 = L=L \L
p2AsshR(A)

Ratd�1(A=p).

Then we have the following commutative diagram:

0 0

# #
0 �! �L �! L

p2MinA(A)
AG

d�1(A=p) �! AG

d�1(A) �! 0

# # #
0 �! �L0 �! L

p2MinA(A)
Ad�1(A=p) �! Ad�1(A) �! 0

# # #
0 0 0

Note that the middle vertical map is an isomorphism since A=p is an integral domain and

dimR(A=p) � d. The map �L! �L0 is surjective by the previous claim. Then our assertion

follows from the snake lemma. 2

Lemma 3.3 Suppose that G is torsion free. Let B be a G-graded ring and let b be a

homogeneous element of B. We de�ne a homomorphism divG(b)\ : ZG
i
(B) �! ZG

i�1(B=(b))

by divG(b) \ ([B=p]) = [B=(b; p)] if b 62 p, and divG(b) \ ([B=p]) = 0 if b 2 p. Then this

map induces a homomorphism divG(b)\ : AG

i
(B) �! AG

i�1(B=(b)).

Proof. We show divG(b) \ (RatG
i
(B)) � RatG

i�1(B=(b)). Take div
G(q; c) 2 RatG

i
(B). To

prove divG(b) \ (divG(q; c)) 2 RatG
i�1(B=(b)), we have only discuss the case b 62 q. Hence

assume b 62 q. Since the diagram

ZG
i
(B)

divG(b)\�����! ZG
i�1(B=(b))

" "
ZG
i
(B=q)

divG(b)\�����! ZG
i�1(B=(q; b))

is commutative, it is enough to show that divG(b)\ (divG(q; c)) 2 RatG
i�1(B=(q; b)). Hence

we may assume that q = (0) and i = dimR(B)� 1 by replacing B with B=q. Consider the

10



commutative diagram

ZG
i
(B)

divG(b)\�����! ZG
i�1(B=(b))

# #
AG

i
(B) AG

i�1(B=(b))

# #
Ai(B)

div(b)\����! Ai�1(B=(b))

where the bottom line is de�ned in (2.4.1) of Fulton[1]. By (3.2), we have isomorphisms

AG

i
(B) �= Ai(B) and AG

i�1(B=(b))
�= Ai�1(B=(b)). This implies that divG(b)\ (RatG

i
(B)) is

contained in RatG
i�1(B=(b)). 2

Proof of (2). First, we suppose G �= Zm. We want to prove AG
.
(A) �= A

.
(A). Let

A[G] =
L

g2G
Aeg be a group ring over A and we regard A[G] as a G-graded ring by

deg(aeg) = deg(a)+ g for each homogeneous element a 2 A and for each g 2 G. We de�ne

a at ring homomorphism f : A �! A[G] by f(
P

g2G
ag) =

P
g2G

age�g, where ag is the

homogeneous component of
P

g2G
ag of degree g. Then A =

L
g2G

Ag is isomorphic to

A[G]0 =
L

g2G
Age�g via f . Since A[G] =

L
g2G

A[G]0eg is also a group ring over A[G]0,

we have the following bijective correspondence between Spec(A[G]0) and SpecG(A[G]):

Spec(A[G]0)  ! SpecG(A[G])

P �! PA[G]

P0  � P

This bijection gives isomorphisms Zi(A[G]0) �= ZG
i+m(A[G]), Rati(A[G]0)

�= RatG
i+m(A[G])

and Ai(A[G]0) �= AG

i+m(A[G]). Consequently, Ai(A)
f��! AG

i+m(A[G]) is an isomorphism.

Note that, for P 2 Spec(A), f(P )A[G] may not be equal to PA[G]. However it is easy to

see f(p)A[G] = pA[G] and f �([A=p]) = [A[G]=pA[G]] for each p 2 SpecG(A). (See Remark

3.7).

Next, we regard A[G] as a Laurent polynomial ring A[G] = A[x�11 ; � � � ; x�1
m
] with homoge-

neous variables x1; � � � ; xm. Then the map g� : AG
.
(A[x1; � � � ; xm]) �= AG

.
(A[x�11 ; � � � ; x�1

m
])

= AG
.
(A[G]) induced by A[x1; � � � ; xm] �! A[x�11 ; � � � ; x�1

m
] is an isomorphism by (2.12).

Furthermore, by (3.3), there are homomorphisms

AG

i+m(A[x1; � � � ; xm])
divG(x1)\�����! AG

i+m�1(A[x2; � � � ; xm]) �! � � �
divG(xm)\������! AG

i
(A):

Denote the composition by � : AG

i+m(A[x1; � � � ; xm]) �! AG

i
(A). If p is a G-prime ideal

of A, then �([A[x1; � � � ; xm]=pA[x1; � � � ; xm]]) = [A=p] by the de�nition of maps (cf. (3.3)).

Finally, we know that the composition of

AG

i
(A)

'�! Ai(A)
f
�

�! AG

i+m(A[G])
(g�)�1

���! AG

i+m(A[x1; : : : ; xm])
��!AG

i
(A)
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is identity on AG

i
(A). This shows the injectivity of ' and, therefore, ' is an isomorphism

if G is torsion free.

Suppose that G �= Zm�T with jT j <1. In order to prove jT jKer(') = (0), we construct

 : A
.
(A) �! AG

.
(A) such that  '([A=p]) = jT j[A=p] for every p 2 SpecG(A). Henceforth,

we identify G with Zm � T . If we put A� =
L

t2T
A(�;t) for � 2 Zm, then the family

fA�g�2Zm gives a Zm-grading on A, that is, A =
L

�2Zm
A�. We have a homomorphism

'0 : AG
.
(A)

'�!A
.
(A) �= AZ

m

.
(A) such that '0([A=p]) = [A=p] for p 2 SpecG(A), by de�nition

of A
.
(A) �= AZ

m

.
(A). Here the right hand side of the equality '0([A=p]) = [A=p] is the class

of Zm-graded module A=p in AZ
m

.
(A).

We use the same argument as the previous part of the proof of (2). We consider a group

ring A[T ] =
L

t2T
Aet and regard it as a G-graded ring by deg(aet) = deg(a) + t for each

G-homogeneous element a 2 A and for each t 2 T . Then A[T ](Zm) :=L
�2Zm

A[T ](�;0) =L
�2Zm

�
�t2TA(�;t)e�t

�
and A[T ] can be regarded as a group ring of T over A[T ](Z

m).

Hence we have a bijective correspondence between SpecZ
m

(A[T ](Z
m)) and SpecG(A[T ]),

and the natural isomorphism AZ
m

.
(A[T ](Z

m)) �= AG
.
(A[T ]). If we de�ne a at homomor-

phism h : A �! A[T ] by h(
P

(�;t)2G a(�;t)) =
P

(�;t)2G a(�;t)e�t, then A is isomorphic

to A[T ](Z
m) (as Zm-graded rings) and, thus, we have an isomorphism h� : AZ

m

.
(A) �=

AZ
m

.
(A[T ](Z

m)) �= AG
.
(A[T ]). By de�nition of h, h�([A=p]) = [A[T ]=pA[T ]] is satis�ed for

each p 2 SpecG(A). Furthermore, the inclusion i : A �! A[T ], (i.e. A maps to Ae0)

determines i� : A
G
.
(A[T ]) �! AG

.
(A), since T is �nite. We denote by  : A

.
(A) �! AG

.
(A)

the composite map of

A
.
(A)

�=�! AZ
m

.
(A)

h��! AG

.
(A[T ])

i��! AG

.
(A)

and claim that  is the desired homomorphism. Recall that [A=p] maps to [A[T ]=pA[T ]]

under AG
.
(A)

'�! A
.
(A)

�=�! AZ
m

.
(A)

h��! AG
.
(A[T ]) for p 2 SpecG(A) by the de�nition of

each maps. Hence we have  ('([A=p])) = i�([A[T ]=pA[T ]]) = i�([(A=p)[T ]]) = jT j[A=p] for
every p 2 SpecG(A). This implies that jT jKer(') =  '(Ker(')) = 0. 2

In the proof of (1.1), we showed that ' is an isomorphism if G is torsion free. However,

it is not true in general.

Example 3.4 Let A = k[x; y]=(x2�y2) with �eld k. We consider A as aG := Z=(2)-graded

ring with deg(x) = 0 2 G and deg(y) = �1 2 G. Then we have

A
.
(A) = A1(A) =

�
Z (ch(k) = 2)

Z2 (ch(k) 6= 2):

On the other hand, AG
.
(A) is generated by [A] and [A=(x; y)], and AG

.
(A) = AG

1 (A) �
AG

0 (A)
�= Z � Z=(2). On can show that the map ' is neither injective nor surjective.

Remark that the cokernel of ' is not torsion if ch(k) 6= 2.
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Corollary 3.5 Let H be a subgroup of G such that G=H is torsion. Then AH
.
(A(H))Q is

isomorphic to AG
.
(A)Q, where A

(H) =
L

h2H
Ah and AG

.
(�)Q = AG

.
(�)
ZQ .

Proof. Since G=H is torsion, we have the following bijective correspondence between

SpecH(A(H)) and SpecG(A):

SpecH(A(H))  ! SpecG(A)

p �! (
p
pA)�

P(H)  � P

Then we have the following exact sequence

0! ZG
.
(A)! ZH

.
(A(H))! D ! 0

such that D is torsion. The cokernel of RatG
.
(A)! RatH

.
(A(H)) is also torsion, (cf. Prop.

1.4. of [1]). This completes the proof of the corollary. 2

Corollary 3.6 Let A =
L

n�0An be a positively graded ring. Then A
.
(A(d))Q of the d-th

Veronese subring A(d) of A is isomorphic to A
.
(A)Q for any integer d > 0.

Proof. This is a direct consequence of (1.1) and (3.5). 2

With notation as in (3.6), A
.
(A) is not always isomorphic to A

.
(A(d)). For example, if

A is a polynomial ring with two variables over a �eld, then A
.
(A) = A2(A) and A1(A

(2)) =

Cl(A(2)) 6= 0.

Remark 3.7 (5.2 of [1]) We are able to describe the inverse map �(g�)�1f � of ' in the

proof of (1.1) explicitly, if the given graded ring is standard. If A =
L

n�0An, then the

map �(g�)�1f � is determined by

A
.
(A)

(g�)�1
f
�

�����! AG
.
(A[x1])

��! AG
.
(A)

[A=P ] 7�!
�
A[x1]=

hP
�
7�! [A=in(P )] ;

where hP is the homogenization of P and in(P ) is the initial ideal of P for P 2 Spec(A).
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4 Appendix

The most important point of Theorem 1.1 is Lemma 3.3, where we discussed a graded

version of the intersection operator de�ned in (2.3) of Fulton[1]. Beside we assumed that

G is torsion free in Lemma 3.3, but it is still true for any �nitely generated Abelian group,

that is the purpose of the appendix. Using this general statement, we can prove (1.1)

directly. However, our proof of the general statement is di�erent from the proof of (3.3).

The proof will be done in the completely parallel way to Corollary 2.4.1 of Fulton[1].

Precisely speaking, the general statement follows from a commutativity of the intersection

with divisors, that is, divG(p; b) \ [A=(a)] = divG(p; a) \ [A=(b)] in AG
.
(A=(a; b; p)) for

homogeneous elements a; b and p 2 SpecG(A). The corresponding equality in the ordinary

Chow group was proved in Chapter 2 of Fulton[1]. In order to prove this property, we

have to argue not only in the category of graded rings, but also in the category of "graded

schemes". Hence the important problem is to de�ne a concept of graded schemes by which

we can prove an analogue statements of [1]. In this appendix, we give such a notion of

G-graded objects in a category of schemes.

In this section, we do not assume that an Abelian group is �nitely generated for a little

while. A graded ring (A;G) is a pair of a ring A and an Abelian group G such that A

is a G-graded ring. If no confusion is possible, we say that A is a graded ring. Let A

be a G-graded ring and B be a G0-graded ring. We say that a graded homomorphism

f : A �! B is a ring homomorphism f together with a group homomorphism ~f : G �! G0

such that f(Ag) � B ~f(g) for each g 2 G. In particular, f is called G-graded, if G = G0 and

~f = 1G. We denote by grRing the category of graded rings and graded homomorphisms

and denote by grGRing the category of G-graded rings and G-graded homomorphisms.

A G-graded ringed space (X;OX) is a ringed space such that OX is a sheaf on X with

objects in grGRing. Note that each stalk of a G-graded ringed space is also a G-graded

ring. A G-graded ringed space (X;OX) is said to be a G-graded locally ringed space, if

OX;x has a unique maximal G-graded ideal for each x 2 X and we denote this maximal

G-graded ideal of OX;x by mx for x 2 X. A graded (locally) ringed space means a G-graded

(locally) ringed space for some Abelian group G. Let (X;OX) be a G-graded ringed space

and (Y;OY ) be a G
0-graded ringed space. A graded homomorphism f : X �! Y between

graded ringed spaces is de�ned by a homomorphism f : X �! Y of ringed spaces such that

a ring homomorphismOY (U) �! OX(f
�1(U)) induced by f is graded for each open subset

U � Y . A morphism of (G-)graded locally ringed spaces is a (G-)graded homomorphism

f : X �! Y as (G-)graded ringed spaces such that fx(mf(x)) � mx for each x 2 X. We

denote by grLocalSp (resp. grGLocalSp) the category of graded (resp. G-graded) locally

ringed spaces and graded (resp. G-graded) local homomorphisms.
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De�nition 4.1 (A�ne G-graded Schemes) Let A be a G-graded ring. We put DG

A
(f) =

fp 2 SpecG(A) j f 62 pg for each homogeneous element f 2 A. Then SpecG(A) can

be regarded as a topological space with open basis fDG

A
(f) j f 2 A is homogeneousg.

Actually, SpecG(A) can be identi�ed with the quotient space Spec(A)= � of Spec(A) with

an equivalence relation de�ned by P � Q i� P � = Q� for P;Q 2 Spec(A). Thus a map

' : Spec(A) �! SpecG(A) de�ned by '(P ) = P � (P 2 Spec(A)) is continuous (the quotient

map) and it determines a ringed space (SpecG(A);OSpecG(A)) by OSpecG(A) = '�OSpec(A).

Then (SpecG(A);OSpecG(A)) is a G-graded locally ringed space such that

� OSpecG(A)(D
G

A
(f)) = Af for each homogeneous element f 2 A

� OSpecG(A);p = A(p) for p 2 SpecG(A)

� ' is a graded homomorphism from the 0-graded ringed space (Spec(A);OSpec(A)) to

the G-graded ringed space (SpecG(A);OSpecG(A)).

We denote by (SpecG(A); A) instead of (SpecG(A);OSpecG(A)) and call it an a�ne G-graded

scheme. We call ' the natural map of the a�ne G-graded scheme (SpecG(A); A).

De�nition 4.2 (G-graded Schemes) A G-graded locally ringed space (X;OX) is said to be

a G-graded scheme, if it has an open covering fUig of X such that (Ui;OX jUi) is isomorphic

to an a�ne G-graded scheme in grGLocalSp. We call that a graded locally ringed space

is a graded scheme, if it is a G-graded scheme for some G. We denote by grSch (resp.

grGSch) the full subcategory of grLocalSp (resp. grGLocalSp) consisting of all graded

schemes (resp. G-graded schemes).

It is easy to reword the statements of schemes to those of (G-)graded schemes. For

example, the following property holds for graded schemes, (see, for example [3]).

(Glueing Lemma) Let fXigi2I be a family of G-graded schemes. Suppose that there are

given open subsets Uij � Xi and isomorphisms 'ij : (Uij;OXi
jUij) �! (Uji;OXj

jUji) in
grGSch for each i; j 2 I such that (1) '�1

ij
= 'ji for each i; j, (2) 'ij(Uij \Uik) = Uji \Ujk

and 'ik = 'jk'ij on Uij \ Uik for each i; j; k. Then there exist a G-graded scheme X and

morphism  i : Xi �! X in grGSch for each i 2 I such that (1)  i is an isomorphism of Xi

onto a G-graded open subscheme of X, (2)X =
S
i2I

 i(Xi), (3)  i(Uij) =  i(Xi)\ j(Xj)

and (4)  i =  j'ij on Uij.

(Fibre Product) grSch has a �bre products. Namely, if f : X �! S and g : Y �! S are

morphisms in grSch, then there exists a graded scheme X �S Y together with morphisms
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p : X �S Y �! X, q : X �S Y �! Y in grSch such that

X �S Y q�! Y
p # #g

X
f�! S

is commutative, and such that for any graded scheme Z and for any morphisms p0 : Z �!
X, q0 : Z �! Y in grSch with fp0 = gq0, there is a unique morphism h : Z �! X �S Y
such that p0 = ph and q0 = qh. Particularly, if grading of S, X and Y have value in G,

G0 and G00, respectively, then X �S Y is a G0
`

( ~f;~g)G
00-graded scheme where G0

`
( ~f;~g)G

00

is a pushout of G0
~f � G

~g�!G00. We remark that if S = SpecG(A), X = SpecG
0

(B) and

Y = SpecG
00

(C), then X �S Y �= Spec
G0
`

( ~f;~g)G
00

(B 
A C).

For any Abelian group G, we regard Z as a G-graded ring with Z0 = Z and Zg = 0

for all 0 6= g 2 G. Then SpecG(Z) is the terminal object of grGSch. If ~u : G �! G0 is

a group homomorphism, then it determines a morphism SpecG
0

(Z)
u�! SpecG(Z) in grSch

such that u# = 1Z. Hence we have a functor (�) �SpecG(Z) Spec
G0

(Z) from grGSch to

grG
0

Sch. In particular, if ~u is injective, then this functor gives a fully faithful embedding

grGSch ,! grG
0

Sch. Moreover, an arbitrary group homomorphism ~u gives a natural

bijection betweenHom
grG

0

Sch(X; Y�SpecG(Z)Spec
G
0

(Z)) and ff 2 HomgrSch(X; Y ) j ~f = ~ug
for all objectX of grG

0

Sch and all object Y of grGSch. In particular, (�)�SpecG(Z)Spec(Z) :

grGSch �! Sch induces a natural bijection

HomgrSch(X; Y ) �= HomSch(X; Y �SpecG(Z) Spec(Z))

for all scheme X and all G-graded scheme Y . From this property, a G-graded scheme is

associated to a scheme which determines a structure of a G-graded scheme. The following

statement is just a translation of the functor in terms of a universal arrow, but it explains

the relationship of graded schemes with schemes.

Proposition 4.3 Let (Y;OY ) be a G-graded scheme. Then there exists a scheme (X;OX)

together with a graded homomorphism ' : X �! Y satisfying the following condition; for

any scheme Z and any graded homomorphism f : Z �! Y , there is a unique homomor-

phism g : Z �! X in Sch such that f = 'g. In particular, if Y =
S
i
SpecG(Ai) is an

a�ne G-graded open covering and fSpec(Ai)
'i�! SpecG(Ai)gi is a family of natural maps,

then X and ' are obtained by gluing fSpec(Ai)
'i�! SpecG(Ai)gi (and, thus, OY

�= '�OX).

We denote by (XG;OXG) the G-graded scheme (Y;OY ) as above. In general, we have

the following.
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Proposition 4.4 Let (XG;OXG) be a G-graded scheme and let ~' : G �! G0 be a group

homomorphism. Then there exists a G0-graded scheme (XG0

;O
XG0 ) together with a graded

homomorphism ' : XG0 �! XG satisfying the following condition; for any G0-graded

scheme Y and any graded homomorphism f : Y �! XG with ~f = ~', there is a unique

homomorphism g : Y �! XG0

in grG
0

Sch such that f = 'g. In particular, if XG =S
i
SpecG(Ai) is an a�ne G-graded open covering, then XG

0

and ' are obtained by gluing

fSpecG0

(Ai)
'i�! SpecG(Ai)gi.

As we mentioned �rst, any notion and any argument of scheme theory can be replateced

by a graded version. In particular, we are able to argue G-Chow groups in the category

of G-graded schemes of �nite type over a regular scheme as in the same way as [1]. Such

arguments conclude the following.

Theorem 4.5 Let G be a �nitely generated Abelian group and let A be a G-graded Noethe-

rian ring. For a homogeneous element a 2 A, we de�ne a homomorphism divG(a)\ :

ZG
i
(A) �! ZG

i�1(A=(a)) by div
G(a)\([A=p]) = [A=(a; p)] if a 62 p, and divG(a)\([A=p]) = 0

if a 2 p. Then this map induces a homomorphism divG(a)\ : AG

i
(A) �! AG

i�1(A=(a)).

Corollary 4.6 Let A be a G-graded ring and let A[x] be a G-graded polynomial ring with

a homogeneous variable x. Then divG(x)\ : AG

i+1(A[x]) �! AG

i
(A), and the at pull-back

map AG

i
(A) �! AG

i+1(A[x]) are isomorphisms for each i 2 Z.

At last, we give an important example of a G-graded scheme. Suppose that G is �nitely

generated and A is a Noetherian G-graded ring. We denote by �(A) the set of all homo-

geneous unit and put deg(A) = fg 2 G j Ag 6= (0)g. If u is in �(A) of deg(u) = g and

H is a subgroup of G, then A(g;H) :=
L

h2H
Ag+h = A(H)u. We call that A is free over

A(H) by homogeneous unit, if there exists a set of homogeneous unit fujgj2J of A such that

fdeg(uj)gj2J is a representatives of G=H (and, thus, A =
L

j2J
A(H)uj). For a subgroup

H � G, we put XH = fp 2 SpecG(A) j G(p)Q +HQ = GQg, (cf. the proof of (2.7)), and
IH(A) = fa 2

S
g2G

Ag n f0g j deg(�(A[a�1]))Q +HQ = GQg. Then XH =
S
a2IH(A)

DG

A
(a),

since G is �nitely generated.

Remark 4.7 For an element a of IH(A), we put N = deg(�(A[a�1])). Then A[a�1](N+H)

is free over A[a�1](H) by homogeneous unit, namely there exists a set of homogeneous unit

fujgj2J of A[a�1] such that fdeg(uj)gj2J is a representatives ofN+H=H and A[a�1](N+H) =L
j2J

A[a�1](H)uj. Furthermore, if b 2 A is a homogeneous element with deg(b)�deg(uj) 2
H for some j 2 J , then there is a homogeneous element b0 2 A[a�1](H) such that b = b0uj
in A[a�1] and A[(ab)�1](H) = (A[a�1](H))[b�10 ].
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By (4.7), there is a bijective correspondence between DG

A
(a) and SpecH(A[a�1](H)) for

any a 2 IH(A). Then, by gluing fSpecH(A[a�1](H))ga2IH(A), we can de�ne a H-graded

scheme structure on XH and put ProjH(A) = XH �SpecH(Z) Spec(Z). Then ProjH(A) is

obtained by glueing fSpec(A[a�1](H))ga2IH(A).

Example 4.8 Let a be a G-graded ideal of A and let R(a) =
L

n�0 a
ntn � A[t] be the

Rees algebra of a. We regard R(a) as G � Z-graded ring with deg(t) = (0; 1). Then the

scheme Proj(R(a)) coincides with ProjG(R(a)), where Proj(�) is the ordinary Proj.

Remark 4.9 ProjH(A) is a generalization of Proj in De�nition 8.2.1 of Roberts[6], and

is the almost same as Proj of Rosenberg[7]. If the reader want to check (4.5) quickly, then

it is enough to show the similar statement to Theorem 8.9.2 of [6] by replacing ProjH(A)

with Proj(A).
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