

核磁気共鳴による固体物理学研究
 ・他の実験手段とは一線を画した情報 1. 原子ごとに測定 分解能=原子サイズ(10⁻¹⁰ m) 2. 電子の運動に関するミクロな情報 電子の運動の範囲、運動の方向、結合状態等 ←原子・電子間に働く力の起源
物質の「個性」と原子配列・電子の運動状態との関 係を知ることのできる強力な実験手段