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1.1. Motivation: Segal’s theorem

1.1. Motivation: Segal’s theorem (1/5)

§1. Introduction

’1.1. Motivation: Segal’s theorem‘

In this talk, we shall consider the generalization of Segal's result
concerning to the space

Hol’(CP!, CcP" 1)

of based holomorphic maps from CP! to CP" ! of degree d.
More precisely, we would like to study the inclusion map

ip : Holp(CP™, X5;) — Mapp (CP™, Xy)

for a toric variety Xy associated to a fan X.
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1.1. Motivation: Segal’s theorem

1.1. Motivation: Segal’s theorem (2/5)

Let X and Y be a connected spaces.

@ Let Map*(X,Y’) denote the space of all base point preserving
maps f : (X, *) — (Y, *) with the compact open topology.
@ For a homotopy class D € mp(Map*(X,Y)) = [X,Y], let

Map},(X,Y) € Map*(X,Y)

denote the path component containing the homotopy class D.

© When X and Y are complex manifolds, we denote by
Holp (X,Y)

the subspace of Map}, (X, Y") consisting of all based
holomorphic maps f : X — Y with [f] = D.
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1.1. Motivation: Segal’s theorem

1.1. Motivation: Segal’s theorem (3/5)

Let z denote the complex variable.

Let P? = P%(C) denote the space of all monic polynomials
f(z) = 2 tag 12 tage2 4 darztag € C[7]

of degree d.  (So there is a homeomorphism P?(C) = C")
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1.1. Motivation: Segal’s theorem

1.1.

Motivation: Segal’s theorem (4/5)

Let f: X — Y be amapand N > 1 be an integer.

@ A map f is called a homotopy equivalence up to dimension N
(reps. a homology equivalence up to dimension N) if

fo o mi(X) = me(Y)  (resp. fu: Hip(X,Z) — Hy(Y,Z))

is an isomorphism for any £ < N and an epimorphism for
k=N.

@ A map f is called a homotopy equivalence through dimension
N (resp. a homology equivalence through dimension N) if

fo i mi(X) = me(Y)  (resp. fo: Hp(X,Z) — Hi(Y,Z))

is an isomorphism for any kK < N.
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1.1. Motivation: Segal’s theorem

1.1. Motivation: Segal’s theorem (5/5)

Consider the space Hol%(CP!, CP"~!) of all based
holomorphic maps f : (CP!, %) — (CP" ! [1:--.:1]) of
degree d. If we identify CP! = S? = C U oo, we can identify

Hol3(CPY, CP" ) = {(f1(2), -+ , fu(2)) € (PH)" : (¥)c},

(*)c (fi(a), -+, fa(a)) # (0,0,---,0) for any o € C.
(i.e. fi(2), -+, fu(2) have no common root.)

| Theorem (G. Segal; [Se] (1979)) |

If n > 2, the inclusion map

ig : Hol%(CP', CP" 1) - Map’(CP!,CP"!) ~ Q2521

is a homotopy equivalence up to dimension (2n — 3)d. []
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (1/9)

1.2. Generalizations of Segal’s result

In this section we recall several results concerning the
generalizations of Segal's result.

Because we shall consider the generalization of the Segal's result
for the case of toric varieties, from now on recall several basic facts
concerning toric varieties.
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (2/9))

’1.2.1. Cones, fans and toric varieties‘

Let {ug}jz, C 2"

@ A rational (convex) polyhedral cone ¢ C R™ is the subset of
the form

o = Cone({ug}ir,) := ZRZO ‘ug = {Z AxUg : Ap > 0}
k=1 k=1

@ o is called strongly covex if o N (—o) = {0}.

@ A face of o is the intersection {L = 0} N o, where L is a
linear form such that L > 0 on o.
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (3/9)

Let ¥ be a finite collection of cones in R".
Then X is called a fan if the following 3 conditions hold:

© Each o € X is a strongly convex rational polyhedral cone.
@ If o €3 and 7 C o is a face of g, then 7 € X..

O If 01,09 € X, then o1 N oy is a face of gy, for each k =1, 2.
(Hence, 01 Nog € X))
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (4/9)

If o is a strongly convex rational polyhedral cone, one can define
the affine variety U, by using its dual cone V.
If ¥ is a fan in R™, the toric variety Xy, (associated to 3) can be
given as

Xz =JUs

oEY

by gluing together U, and U, along their common open subset
Uynr for all o,7 € 3.
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (5/9)

Let ¥ be a fan in R™ and let ¥(1) = {pk}};é be the
set of all one dimensional cones in 3.

©Q Foreach 0 <k <r—1, let n € Z" denote the primitive
generator of py such that Z>qg - ng = p, N Z".

@ The subset n = {n;,,--- ,n; } C X(1) is call primitive if the
whole set n does not span a cone in X but any of its proper
subsets spans a cone in X.

@ Define the integer 2 < ryin(X) <7 by

Tmin(X) = min{s : {n;,,--- ,n; } is primitive}.
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (6/9)

’1.2.2. Results of Guest and Mostovy-Miranueva

’Theorem (M. Guest (1994))‘

Let X3 be a fan and let Xy, denote the toric variety associated
to X. If X5 is a compact smooth toric variety and

D= (do, 209 ;dr—l) S (Zzo)r such that ZZ;(l) dipng = 0,
then the inclusion map

ip : Hol)(S?, X5) — Q% Xx,

is a homotopy equivalence up to dimension n(D), where
n(D) := min{dy,- -+ ,dy—1}. O
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (7/9)

’Theorem (Mostovoy-Miranueva (2013))‘

Let 33 be a fan and let X, denote the toric variety associated to 3.
Let D = (do, -+ ,dr—1) € (Z>1)" be r-tuple of integers such that
Z};:‘) dipng, = 0. Then if X5, is a compact smooth toric variety,
the inclusion map

ip : Holp(CP™, Xy) — Mapp (CP™, Xy)
is a homology equivalence through dimension N(D,Y.), where

N(D,%) := (2rmin(X) —2m — 1) min{dg, -+ ,dr—1} —2. O
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (8/9)

’ Conjecture A ‘

Let ¥ be a fan in R™ such that (1) = {po, -+ ,pr—1}, let X»
denote the toric variety associated to ¥, and let

D = (do,- - ,dr_1) € (Z>1)" such that 37— dpng, = O with
Z>q - ng = pr NR™.

Then, even if Xx, is a non-compact smooth toric variety, when
Tmin(2) > m and 3(1) spans R™, is the inclusion map

ip : Holp(CP™, X5;) — Mapp (CP™, Xy)

a homology equivalence through dimension N (D, X)?
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1.2. Generalizations of Segal's result

1.2. Generalizations of Segal’s result (9/9)

When Xy, = T" = (C*)" is an algebraic torus, there is

no (non-trivial) holomorphic map f : CP! — Xy except constant
maps. However, because iy (X) = 1 for Xy = T7,

2rmin(X) =2 < 2m + 1 for any m > 1 and and Conjecture A is
correct for Xs» = T"!
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (1/7)

1.3. Generalizations of Segal’s result (non-compact case)‘

We would like to consider the inclusion map
ip : Holp(CP™, X5) — Mapp (CP™, X7y)

for a non-compact smooth toric variety Xs and study whether the
result of Mosotovy-Varanueva holds or not for this case.
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (2/7)

’Remark (Atiyah-Jones-Segal type problem)‘

For a complex manifold (or variety) X C CP!, does there exist
an integer N (D) such that the inclusion map

ip : Holp(CP™, X) — Mapp(CP™, X)
is a homology equivalence through dimension N (D) and that

lim N(D) = o0? O

D—oo

The above problem is called the Aiyah-Jones-Segal type conjecture.
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (3/7)

Let n > 3 and let I be collection of subsets of

[n] ={0,1,2,--- ,n — 1} such that card(c) > 2 for any o € I.
Q@ Foro={i1, - ,is} €1, let

Ly :={(x0, - ,2pn—1) €C" 1y, = =x;, = 0}.

@ Let Y7 denote the subspace of C™ given by Y7 := C" \ U Ly.
oel
@ Define the subspace X; ¢ CP"! by

X =Y;/C* = (C"\ | J Ls)/C*, where
o€l

C* actson Y7 by a- (zg, -+ yxp—1) := (ax0, -+ ,QZp_1).
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (4/7)

Let n > 3 and let I be collection of subsets of
[n] ={0,1,2,--- ,n — 1} such that card(c) > 2 for any o € I.
@ I I=1I(n)={{0.1,-- ,n—1}} = {[n]}, Ly = {0} and

X1 = Xy = (€ \ L) /C = (€ \ {0})/C* = CP"1,
Q@ IfI=J(n)={{i,j}:0<i<j}, then

X; = XJ(n) = ((Cn \ U L{i,j})/C*

0<i<j<n—1
= CP"1\ U H;;, where
0<i<j<n—1
Hiaj = {[‘TO Lot xn—l] € CPnil X = LUJ = O}
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (5/7)

Let n > 3 and let I be collection of subsets of

[n] ={0,1,2,--- ,n — 1} such that card(c) > 2 for any o € I.

(i) In general, X1 has the following form:

X; = CP™ 1\ U H,, where
ol
Hy = {[wo: - :@n] €ECP" 'z =0ifi €}

(i) The space X7 is a smooth toric variety and X7 is a
non-compact toric variety if I # I(n).

(iii) It is known that X7 is simply connected and m(X7) = Z.

m Note that in this case we can take » = n and
d():dl :"‘:dn—l :d(SOD:(d,d,-~ ,d))
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (6/7)

Let n > 3 and let I be collection of subsets of

[n] ={0,1,2,--- ,n — 1} such that card(c) > 2 for any o € I.

If we identify S?> = CP! = C U {00} and choose the points co and
[1:---:1] € X7 as the corresponding base-points, we can identify
Holj(5%, X1) = {(fo(2), - , fa-1(2) € PUC)" : ()1},

where

()7 The polynomials f;,(2),--, fi.(z) have no common root for
any o = {iy,--- ,is} € I.
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1.3. Generalizations of Segal’s result (non-compact case)

1.3. Generalizations of Segal’s result (non-compact case) (7/7)

Recall the following classical result:

| Theorem (M. Guest, A. Kozlowski, KY (1994))|

Let n > 3 and I denote the collection of the subsets of
[n] ={0,1,2,--- ,n — 1} such that card(c) > 2 for any o € I.
If d > 1, the inclusion map

iq : Hol}(S?, X1) — Q2 X

is a homotopy equivalence up to dimension d. []
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1.4. The main result

1.4. The main result of this talk (1/6)

’1.4. The main result‘

Let d > 1 be an integer and we would like to consider the
Atiyah-Jones-Segal type result for the the inclusion map

iq : Hol}(CP™, X1) — Mapy;(CP™, X7)

when [ is a collection of subsets of [n] = {0,1,--- ,n — 1} such
that card(o) > 2 for any o € I.

Define the positive integer d(I) by

d(I) := min{card(o) : 0 € I}.
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1.4. The main result

1.4. The main result (2/6)

Theorem | (The case m = 1; A. Kozlowski, KY)‘

If n >3 and d(I) > 3, the inclusion map
ip : Hol%(S%, X1) — Q2X;

is a homotopy equivalence through dimension N (d,I), where

N(d, I) := (2d(I) — 3)d — 2. O
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1.4. The main result

1.4. The main result (3/6)

Let 37 denote the fan of the toric variety X;.

Then we can show that
Z[(]_) = {RZO . eOvRZO -ep, - 5R20 . enil}’

where {e;}7Z] denotes the standard basis of R"~! and

e
€)= — 2 k—1 k-

Sor=mnand n; = e, for 0 < k <n — 1. Moreover, one can also
show that

Tmin(ZI) = d([)
and dp =dforall 0 <k <n-—1.
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1.4. The main result

1.4. The main result (4/6)

Hence, we have:

| Corollary 11 (A. Kozlowski, KY)|

Conjecture A is true for a non-complact smooth toric variety
X =Xy whenm =1

’ Conjecture B ‘

Is Conjecure true for X = X7 even if m > 27, i.e.
For m > 2, is the inclusion map

ig : Hol;(CP™, X7) = Map/,(CP™, X;)
a homology equivalence through dimension

N(d,m):= (2d(I) —2m — 1)d — 27 O

Ol
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1.4. The main result

1.4. The main result (5/6)

Theorem Il (Some improvement of Segal’s result)‘

Ifn>3 and I = I(n), X; = CP"! and the inclusion map

iq : Hol(S%,CP™ 1) — Q2Ccpm!
is a homotopy equivalence through dimension N (d,n), where

N(d,n):=2n—-3)(d+1)—1. O

The above result can also be proved by using the

result due to [C2M?].
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1.4. The main result

1.4. The main result (6/6)

Mostovy-Varanueva [MV] uses the Stone-Weerstass Theorem for
vector bundles. So if a toric variety X5 is non-compact, it is
impossible to use their method.

However, if m =1 and Xy, = X, then we can probe it by using
the scanning maps.
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2.1. Coordinate subspaces and polyhedral products

2.1. (i) The arrangement of coordinate subspaces (1/4)

§2. The topology of X;

’2.1. Coordinate subspaces and polyhedral products‘

Let K be a collection of some subsets of
[n] ={0,1,--- ,n—1}.

Then K is called a simplicial complex on the index set [n] if the
following condition holds:

(%) TCo and cc K =717 K

In this talk, a simplicial complex K means an abstract

simplicial complex and assume that it always contains the empty
set ().
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2.1. Coordinate subspaces and polyhedral products

2.1. (i) The arrangement of coordinate subspaces (2/4)

Let K be a simplicial complex on the index set

[n] ={0,1,2,--- ;n—1}.
@ For each 0 = {i1,--- ,ix} C [n], define

LO':{(xOg'.-,xn—l)ecnjxil:-..:xikzo}'

@ Define the complement U(K) of the coordinate subspace
arrangement by

UK)=c"\ |J Lo
c¢K,0C[n]
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2.1. Coordinate subspaces and polyhedral products

2.1. (i) The arrangement of coordinate subspaces (3/4)

Let I be a collection of some subsets of [n] and set
K(I)={ocCn]:Ls ¢ | JL-}.
Tl
@ Then K(I) is a simplicial complex on the index set [n].
@ UKK(I)=C"\|JL, and |]) Lo=JL-
Tel o K(I) Tel
Therefore,

i = C"\|J L =UKD),
o€l
X; = Yi/C =U(K(I)/C".
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2.1. Coordinate subspaces and polyhedral products

2.1. (i) The arrangement of coordinate subspaces (4/4)

Let K be a simplicial complex on the index set [n].

Q fK=0A""!={oCn]:0#[n]},
UK)=C"\{z0="--+-=2,-1=0} =C"\ {0}.

@ If K is a simplicial complex on the index set [n] given by

K ={¢,{0},{1},--- ,{n —1}}, then

UK)=C"\ U {(z0, " ,2n—1) € C" : z; = z; = 0}.
0<i<j<n—1

v
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2.1. Coordinate subspaces and polyhedral products

2.1. (ii) The polyhedral product (1/4)

Let K be a simplicial complex on the index set

[n] ={0,1,--- ,n—1} and let
(X, 4) = {(Xo,40), -, (Xn-1,An-1)} (A C Xy)
Define the polyhedral product Zx (X, A) of (X, A) w.rt. K by

(Z(X,A) = [J(X,4)7,  where

oeK .
(X,A)° ::{($0,---,xn,1)€HXk:$k€Akfork:¢a}
k=0

:HXkXHAk'

keo ké¢o




The topology of the space X
00000®00

2.1. Coordinate subspaces and polyhedral products

2.1. (ii) The polyhedral product (2/4)

Let K be a simplicial complex on [n].

If (X,A) = (X, Ag) for all k, we write

Zr(X,4) = Zx(X,A)= [J(X,4)7, where
ceK
(X,A)U = {(wo,-" ,xn_l) eX":xpcAifk ¢ 0'}
~ xcard(o) , gn—card(o)
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2.1. Coordinate subspaces and polyhedral products

2.1. (ii) The polyhedral product (3/4)

Let K be a simplicial complex on the index set [n].

(i) Zx(D?,S%) = Zk (the moment angle complex of K)
(i) U(K) = C" \ Upgx Lo = Zk(C,C).

’ Remark (Buchstaber-Panov, [BP]) ‘ If K is a simplicial

complex on the index set [n] and set T" := (C*)", there is
T"™-equivariant deformation retraction

UK) —— Zx
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2.1. Coordinate subspaces and polyhedral products

2.1. (ii) The polyhedral product (4/4)

’ Lemma ([BP]) ‘ Let K be a simplicial complex on the vertex

set [r], and let DJ(K) denote the Davis-Januszkiewicz space of K
defined by

DJ(K) := Zx(CP™, ) C (CP®)" = BT".

Then Zi = Zx(D?,S') is the homotopy fibre of the inclusion
map

DJ(K) < (CP®)" = BT".

Thus, there is a fibration sequence (up to homotopy)

Zx — DJ(K) -5 (CP®)" = BT". O
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2.2. The toric variety X; (1/5)

’2.2. The topology of the toric variety X7

m Let I be a collection of subsets of
[n] ={0,1,--- ,n — 1} such that card(o) > 2 for any o € I.
Recall that

Xy =(C"\ | Lo)/C* = U(K(D)/C".

o€l
Then one can define the T" !-action on X by
(tl, °oo ,tn_l) o [:c() g ©00 g $n_1] = [{L’o : tlxl 5 o000 g tn_la:n_l]

and it is easy to see that X7 is a toric subvariety of CP" 1.
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2.2. The toric variety X; (2/5)

Let {ex}7—] € R"~! denote the standard basis of

R"! and let ey := — Y7~ ey, where
e :(150)07"'7070)

(=) :(071707"'7070)

€n—1 :(070707"' 7071)

For each subset o & [n] = {0,1,--- ,n — 1}, define the strongly
convex rational polyhedral cone Cone, in R*~! by

oo {Zzzl aie;, : ap > 0} if o= {i1, - ,is},
7 o if o = 0.




The topology of the space X
00®00

2.2. The topology of the toric variety Xy

2.2. The toric variety X; (3/5)

Let I be a collection of the subsets of
[n] ={0,1,---,n — 1} such that card(c) > 2 for any o € 1.

© There is the Segal type fibration sequence (up to homotopy)
Xr % Zry(CP®, %) = DJ(K(I)) — (CP®)"L,
@ If K is a simplicial complex on the index set [n], the set
Y(K):= {Coneg 1o € K} is a fan in R"~1,

@ In particular, if K = K(I), the set X1 := X(K(I)) is the fan
associated to the toric variety X1 and (1) = {R>o - e, }} 5.
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2.2. The topology of the toric variety Xy

2.2. The toric variety X; (4/5)

Let n > 3 and set [n] = {0,1,--- ,n — 1} as before.

QIfI=Jn)={{i,j}:0<i<j<n-1},

K(J(n)) ={0,{k}:0<k<n-—1}

% 1(n) = {{0},Rx0-€;:0<k<n-—1}
X ) = CP" '\ Up<scjcn Hisj
where H” = { teer iz ] ECPMLig; = Gy = 0}.
Q@ If I=1I(n):={[n }
K(I(n)) ={oC|[n [ 1}
X1n) = {Coneg : }

Ximy — =(C™\ L[n])/C* = (C\ {0})/C* = CP"~!
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2.2. The topology of the toric variety Xy

2.2. The toric variety X; (5/5)

’Remark (Homogenous representation)‘ Let X be a fan in

R™, $(1) = {px};_p, and nj, € Z™ the primitive generator of py,
such that py NZ™ = Z>¢ - ny, for each 0 < k <. Then if
{ng, -+ ,n._1} spans R™, there is an isomorphism

Xy =U(Ky)/Gs,

where s and Gy denote the simplicial complex on the index set
[r] ={0,1,--- ,r — 1} and the subgroup of T" = (C*)" defined by

Ks = {{i1, -+ ,is} C [r] : {ni,, -~ ,n;,} spans a cone in X},
GZ = {(/’L()? 000 7/”’7’—1) c TT’ . 2;% ulink7ej> = 1 for 1 S VJ S m}
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© The stabilization maps and the idea of the proof
@ 3.1. Stabilization maps and the idea of the proof
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3.1. Stabilization maps and the idea of the proof

3.1. Stabilization (1/11)

§3. Stabilization maps and the idea of the proof

’3.1. Stability result (scanning maps)‘

In this section, we shall study the stabilization map
sq : Hol}y(S?, X1) — Hol, 1 (S?, X1)
and prove the stabilization theorem by using the scanning map,

S+ lim Hol}(S?, X1) — Q521 (CP™, ).
d—o0

Next we shall show that the stabilization map s4 is a homology
equivalence through dimension n(d, I') by using the Vassiliev type
spectral sequence and prove the main result (Theorem I).
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3.1. Stabilization maps and the idea of the proof

3.1. Stabilization (2/11)

Let d > 1, X be a connected based space and Sy

the the symmetric group of d-letters.

@ Note that S; acts X9 by the coordinate permutations. Let
SP%(X) denote the d-th symmetric product given by the orbit
space, SP4(X) := X4/S,

@ Each element a € SPY(X) may be represented as a finite
formal sum

s
a = dexk
k=1

S
(vr € X, dy € Z>1, x; # x5 if i # J, dezd)
k=1
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3.1. Stabilization (3/11)

Let (X, A) be a pair of connected based space.

Q If x € A C X is the base-point, one has the inclusion
SP4(X) € SPYH(X) by a +— o + *.

Let SP*°(X) denote the union SP*°(X) := G SPY(X).
@ Define the equivalence relation ~ on SPd(XL;_liy
a~Bean(X\A)=n(X\A) fora,BecSPYX).
@ Let SPY(X, A) and SP(X, A) be the quotient spaces

SPY(X, A) :=SP4X)/ ~, SP(X, A):= fj SPY(X, A).
d=1
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3.1. Stabilization (4/11)

(i) Define the space E4(X) by

BH(X) = {(0,--+ 1 €n1) € SPUX)" : Njestj = 0 for Vo € I}.

Note that 3 a natural homeomorphism Hol}j(S?, X ) = E4(C).

(ii) Let sq : Hol}(S?, X ) — Holjy,; (5%, X1) denote
the stabilization map given by the composite of maps

Holj(%, X1)  B{(C) ~ Ef*!(C) & Holy,, (5%, X)),
where s/, denotes the map given by  (d < |wo| < d+1)

BY(C) = B{({w € C: Ju| < d}) —— E{+(C)

3 — 4w
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3.1. Stabilization (5/11)

Because there is a homotopy commutative diagram

Hol’(S?, X;) —<%— Hol},,(S?, X1)

idlﬂ id+1ln

Q?lX[ E— Qg_;,_]_XI
we obtain the map

i = lim : lim Holy(S?, X7) — lim Q23X ~ Q23X
d—oo  d—oo d—o00

where the colimit dlim Hold(Sz,XI) is taken from the stabilization
—00

maps $q's.
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3.1. Stabilization (6/11)

Let € > 0 be a fixed sufficiently small real number.
Let &€ = (&0, ,&n—1) € EY(C). For each w € C, let U,, denote
the open disk of radius € with the center w,

Upy={zeC:|z—w| <€}
Then consider the element S/ (w, &) € Er(D?, S') given by

S&(w,{) = (50 MUy, &n—1N Uw)
€ FE(U,,0U,) = E/(D?, 81

This induces the map S, : C x E4(C) — E(D?, S') and its
adjoint gives the map

Sa : B}(C) — Map(C, Er(D?,S")).
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3.1. Stabilization (7/11)

Because lim Sy(w) = (0,---,0), if we choose the point
w—r00

(,---,0) as the base-point of E7(D?,S'), we obtain the map
Sy : E}(C) — Map*(C U oo, Ef(D?, S1) = Q2E(D?, 8Y).

Since the space E¢(C) is connected, the image of S; is contained
in some component of Q?E;(D?, S1), which is denoted by
Q2E;(D?,SY). Thus, we have the map

Sq: EC) —» Q2E(D?,8Y),
and this induces the map

S = lim Sy: lim EY(C) — lim Q3E;(D? S') ~ Q2E;(D? SY).
d—o0 d—o0 d—o00
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3.1. Stabilization (8/11)

Definition (continued) ‘ If we identify Hol}(S2, X;) = E4(C),
we obtain the map

S: lim Hol(S%, X;) — Q2E(D?,8Y).
—r 00

This map S is called the scanning map.

| Theorem A (Guest, Kozlowski, KY (1994)) |

Q E[(D? S') ~ Zy ) (CP>, %) (homotopy equivalence).
@ S: lim Hol5(S%, X1) — Q2F;(D?,S') is a homotopy
— 00

equivalence. O
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3.1. Stabilization (9/11)

If we recall the fibration sequence
X; 5 Zy(p)(CP*®, %) — (CP®)""t = BT
we have the homotopy equivalence
Q2X; 295 02z ) (CP, ).

Then by using Theorem A and some digram chasing, we have:

Theorem Al| [fd(I) > 2, the map

oo = limig : lim Hol%(S?, X7) — Q2X;
d d—oo

is a homotopy equivalence. []
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3.1. Stabilization (10/11)

Ifn> 3 and d(I) > 3, the stabilization map
iq : Hol5(S?, X 1) — Holy (5%, X1)
is a homology equivalence through dimension N(d, I), where

N(d,I) = (2d(I) — 3)d — 2.

Theorem B can be obtained by using the Vassiliev type spectral
sequence. L]
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3.1. Stabilization (the idea of the proof) (11/11)

Theorem | (The case m = 1; A. Kozlowski, KY)‘

If n >3 and d(I) > 3, the inclusion map
ip HOIZ(SQ, X[) — QZX[
is a homotopy equivalence through dimension N (d, I), where

N(d, I) == (2d(I) — 3)d — 2.

’ Proof of Theorem | ‘

If d(I) = min{card(c): 0 € I} > 3, we can show that the two
spaces Hol’j(S?, X) and Q2X are simply connected. Then
Theorem | follows from Theorem Al and Theorem B. O]




	Introduction
	1.1. Motivation: Segal's theorem
	1.2. Generalizations of Segal's result
	1.3. Generalizations of Segal's result (non-compact case)
	1.4. The main result

	The topology of the space XI
	2.1. Coordinate subspaces and polyhedral products
	2.2. The topology of the toric variety XI

	The stabilization maps and the idea of the proof
	3.1. Stabilization maps and the idea of the proof


