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§1. Homeomorphism Groups with Whitney Topology

M : a connected n-manifold (possibly with boundary)

— separable, metrizable

H(M) : Homeomorphism Group of M

Whitney Topology : (h e H(M), U € cov(M))

Basic Open sets : ~ O(h,U) := {g € H(M) | g : U-close to h}
x g:U-closetoh <= VzezeM JUecelU st g(x),h(x)eU
—  Top group
KcM

H(M; K)={he H(M): hlg =idx} < H(M) (Whitney Topology)
H(M; K) : the identity connected component of H(M; K)
H(M; K) C H(M; K) : Subgroup of Homeo’s with compact support

Problem. Topological Properties of H(M; K) and H.(M; K)



Local Models for H(M, K) and H.(M, K)
H(M, K) and H.(M, K) : Homogeneous, Infinite-dimensional
We can expect that H(M, K) and ‘H.(M, K)

are Top manifolds modeled on some typical infinite-dim spaces.

Test case — H(R) and H.(R)
(1) Models for Compact-Open Topology H(R)., :  (R. D. Anderson, et al)

Hi(R)o = by = [[70 (Tychonoff Product of £5)
He(R)e ~ ([T ¢2)s (finite sequences) (Weak Product of £s)
(1 (R)eo, Hel(R)eo) ~ ([T760, ([T7 lo)y) = (€ X Lo, s X £3)

(2) Models for Uniform Topology H"“(R), : (MSYY, 2011)

(H'(R)u)o = Hy(R)y ~ Lo
Ho(R), ~ by x 0]
(H(R)y, He(R)y) & (bo X o X Lo, {0} X £y X Eg)



(3) Models for Whitney Topology H(R) : (BMS, 2011)
H(R) =~ Hi(R) =~ 0¥ (Box product of £5)
H(R)g = H(R) ~ [0y ~ £y x R® (Small box product of £5)

(H(R), He(R)) = (H1(R), He(R)) = (L4, [1°0)
Box products :
— [O“6y = ([["¢2, Box Top)  Basic open subsets : [[°,U; (U; C £ : open)
[1“¢y C [O¥¢y (finite sequences) 0, X,  Ha( Xy, %)
— (P. Mankiewicz, 1974) Classification of Top. Type of LF spaces
[FR ~ R® =dirlim{R'CR*CcR3C---}
[190y) ~ 5 x R*
Expectation. When ¢l (M — K) : non-compact (and K C M : good)
(H(M,K),H (M, K)) ~ (O%0, [194)

local

— H(M, K) : a paracompact (¢5 x R*)-manifold

In this talk we consider the 2-dim case.



M : a connected 2-manifold
K C M : asubpolyhedron (in some triangulation of M)
§2. Previous Results in Compact cases
[1] Homeomorphism Groups in Compact cases :
“clyf(M — K) is compact”
H(M; K)=H.(M;K) : Whitney Top = Compact-Open Top.
(1) H(M; K) : a metrizable o-manifold
(R.Luke - W.K.Mason (1972), et al. + Theory of top ¢;-manifolds)
(2) Classification of Homotopy type of H.(M; K )
(M.E. Hamstrom (1966), et al.)
H(M; K)o~ with several exceptional cases
(H(M; K)y =~ ls) (Ho(M;K)g~ P = H(M;K)y~ P x {5)
(3) Mapping class group
H(M; K)g=H(M; K)y C H(M; K) : Open normal subgroup
M(M; K) = H(M; K)/H(M; K)g



[2] Spaces of Embeddings and Bundle Theorem in dim 2
(R.Luke - W.K.Mason (1972), Yagasaki (2000))

L C N : subpolyhedra of M s.t. cly/(N — L) is compact

EX(N, M) : the space of proper embeddings f: N — M s.t. f|p=1idg

Compact - Open topology

R:H(M,L)— E(N,M), R(h)=h|y : the restriction map
(1) &;(N, M) : an fy-manifold if dim(N — L) > 1.
(2) The map R has a local section at idy.

R:H(M,L)— ImR : a principal H(M, N)-bundle
o Im R : an open neighborhood of idy in £ (N, M)

* R.Luke - W.K.Mason (1972)
— N = a proper arc, an orientation-preserving circle, L = ()
— Conformal mapping theorem

* Yagasaki (2000) — General case
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§3. Non-Compact case cly (M — K) is non-compact”

[BMSY, 2011] (BMSY [arXiv:0802.0337v1])
(1) (H(M,K),H (M, K)) ~ (O, )

local

(2) He(M:; K) - a paracompact (£ X R>)-manifold

(3) H(M; K)y=H(M; K)y C H(M; K) : Open normal subgroup
M(M;K)=H(M; K)/H(M; K)y : Mapping Class Group

(4) M; € M (1 € N) : Compact s.t. M; C IntpM; 1, M =U;M;

H.(M; K) = Dir Lim H(M; KU(M — M;)) in Category of Top Groups
"Fop-opaees
[BMSY, 2014]

1 in the exceptional cases
(2) M : Non-Compact = #M. (M) =

Ng in all other cases
Exceptional cases: M =X — K
X = Annulus, Disk or Mobius band,

K = Non-empty compact subset of one boundary circle of X



Comparison with Compact - Open Topology
(1) Whitney Topology :  H(M; K)y = H(M; K)y =~ ly x R™® ~ %
(2) Compact-Open Topology (Yagasaki, 2000, 2004)

(St x by~ S'if (M, K) = (R%,0), (R? 1pt),

(S x R, D), (S* x [0,00),0),
(M — OM, 0)

U h.e. Uy ~ % in all other cases.

(HC(M; K)co)()

(H(M, K>00)0 ~ <

Remark. H.(R?),, ~S!
(i) The contraction of H.(R?)., induced by the Alexander trick
is not continuous.
(ii) We can directly construct an essential loop in H.(R?).,
(some kind of rotation)

since Compact-Open Top does not impose enough control on the end of R2.



Idea of Proof. H(M; K)y~ ly x R*® in Non-Compact case
M : Non-Compact
M =U>X M, : M, : Compact 2-submanifolds of M s.t. M, C Inty M,

I

H(M; K)=U,H(M; KU (M — M,)) (atower of closed subgroups)
cach H(M; K U (M — M,) : Compact Case
Top Group Tower of Closed subgroups
G = G, (n €w) (w=A{0,1,2,---})
(Gn C Gn—i—la G = UnGn)



g§4. Results on Top Groups and Towers of Subgroups

G : Top group (e : the identity element of G)
G, (n € w) : Tower of Closed subgroups of G
p:(Gpe) — G plag, 1, ..., Ty, €, €, ... ) =T -+ T
[1] (BMSY [arXiv:0802.0337v1], 2011) (0) p: continuous, surjective
(1) p: open at (e), = G =DirLimG, (in Category of Top Groups)
(2) p has a local section at e — G : Locally contractible
each G,, : Locally contractible (H.(M™) : Locally contractible V¥ n)
[2] (2007 - 2008)  (BMSY [arXiv:0802.0337v1])
(#) () p:EGy—= Gropen  (ii) Gp— G/Go

admits a global section s,,.

L1,Gh
— s = DW p

(#) + Results in Compact Case (§2) = H(M; K)y~ [y ~ l5 x R



[3] (2009 - ) T.Banakh-D.Repovs — Series of papers
Study of Top LF-manifolds and Direct limit of Uniform spaces

Sufficient Condition that Top Group =~ /; xR* (BMRSY, 2013)
(i) G : Non-metrizable (ii) G, =,
(iii)) p:0,G, — G : open
(iv) Gpi1 — Gri1/G, has alocal section
(v) each Z-point of G,,11/G, is a strong Z-point.

(for example, G,,11/G,, is an fy-manifold.)

— G =~ ly x R®

(*) Criterion of 52 X R — H(M, K>0 ~ 62 x R
+ Results in Compact Case (§2)

Below we give Sketch of (x)



Notations.
(1) M : a connected 2-manifold
K C M : asubpolyhedron  “cly;(M — K) is non-compact”
(2) We can represent M =, ., M,, where
M, : a compact subpolyhedron of M, M, C Inty; M, 1, Inty M, ¢ K.
K,=KU(M —Inty; M,,) (n € w)
(3) Consider Subgroup and Tower of subgroups :
G=HMK) Gy=HM K)o (n€w)

We shall show that G and G,, (n € w) satisfy the next conditions :
[1] G : Non-metrizable 2] G, =,
3] p:,G, — G : open
4] 7: Gui1 — Guy1 /Gy, admits a local section
5] G,11/G), : an fo-manifold
~ each point of G,41/G), is a strong Z-point.

Then, Criterion of £5 x R* implies that G ~ £y x R™>.



[1] Whitney Topology + Diagonal argument = G is not 1st countable
[2] Compact Case (§2) ~» G, : an fy-manifold, G, ~ % G, ~
[4], [5]

(1) First consider the groups H, = H(M; K,) (n € w)

H,
/ Y open (m <mn)

H,/H, ——— ImR C & (Kp, M)

homeo

Compact Case (8§2) ~» R has a local section, €% (K, M) : an fo-manifold
. 7w: H,— H,/H, hasalocal section, H,/H,, : an {s-manifold

(2) G, C Hy, : open . H,,/G,, : discrete
w: H,/G,, — H,/H,, : alocally trivial bundle with fiber H,,/G,,

~ o Gyl — Gri /Gy has alocal section, Gy,41/G,, - an fo-manifold



3] p: .G, — G : open
(1) Compact Case (82) ~ Ry, : G, — Ex (K,—1, M) has a local section
Sp o (Vi idg, ) = (G, idy) at idg, .
sp (n €w) ~» alocal section s of p . p:open
(2) (a direct argiment to show that p is open)

Suppose U, is a symmetric open nbd of idy; in G, (n € w)
~» We have to show that p([d,U,) is a nbd of idy; in G

(3) (Notations) U e cov(M)

ACM St(AU) =U{Ueld: AnU # 0} St(U) ={St(U,U) : U e U}
(4) Inductively we can find U, V, € cov(M) (n € w) such that

(i) (a) St(Un) < Vo (V-1 ={M})

(b) h € H(M; K,), h: Upn-close to idy = he U,
(i) (a) StV,) <U,  (b) [ €Ef (Kuy, M), f: SHV,)-close to idy,
— [ €V, su(f): Uy-close to idy,

(5) IV ecov(M) st. {St(x,V) |z €M —Intyy M1} <V, (n€w)

O(idy, V) C p(&,U,)



Mapping class groups of non-compact surfaces
M : a non-compact connected 2-manifold (possibly with boundary)
M(M) = Ho(M)/H(M)q
Theorem. The following conditions are equivalent:
[1] M.(M) : trivial
[2] M (M) is a torsion group (i.e., each element has finite order)
[3] M : exceptional ie, M~ X — K :
X = Annulus A, Disk D or Mobius band M,

K = Non-empty compact subset of one boundary circle of X

Sketch of Proof : 1] = [2] = [3] = [1]
2] = [3] :
Lemma 1.

(1) Every boundary circle C' of M is a retract of M.
(2) he H(M) heH(M)y <= 3 anisotopy from h to idy,

with compact support



Lemma 2. M. M) D Z in each of the following cases:
(1) M contains a handle;

2) M contains at least two disjoint Mobius bands;

(2)

(3) M contains at least two boundary circles;

(4) M contains a Mébius band and a boundary circle;
(5)

5) M is separated by a circle C' C Int M
into two non-compact connected subsurfaces Ly and Ls.
(1) (5) hy := the n-fold Dehn twist along C' (n € Z)

Claim: h, € H(M)y <= n=0
(i) Suppose h,, € H(M ).

1 an isotopy h,, =~ id); with a compact support K.
(i) 3 a path £in M which

connects a point in Ly \ K with a point of Ly \ K and crosses C' once.

(iii) iyl =~ € in M rel. end points .. C" ~ (h )0~ ~ % in M.
(iv) M retracts onto C . C"~x in C S.n=0



Proof of [2] = [3]. Suppose M (M) : a torsion group.

(1) By Lemma 2, M contains
(i) at most one M&bius band } PPN,
(ii) at most one boundary circle

(iii) no handle and

(iv) no circle separating M into two non-compact connected subsurfaces.

(2) M =U,c, My, where
(i) M, : a compact connected subsurfaces of M,
(i) M, Cintpyy M, 1, (i) if OM # () then MyNOM # 0,
(iv) if L is a connected component of M — Inty; M,

then L is non-compact and L N M, is connected.

(3) Every M, has exactly one boundary circle meeting M — Int; M,,.



(4) Three possible cases

Case (i): M contains no boundary circle and no Mébius band.

M=~D-K (K CJD: compact, # () (V M, : a disk)
Case (ii): M contains a Mobius band. (V' M, : a M&bius band)
Ma~M-K (K COM: compact, # ()
Case (iii): M contains a boundary circle C. (V' M, : an annulus)

(M,C)~ (A—K,Cy) (DA=C,UCy, K C Cy: compact, # )

[End of Talk]

Thank you very much for your attention!



