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1. Preliminaries

K a simplicial complex on [m] = {1, . . . ,m}.
I = {i1, . . . , ik} ∈ K a simplex. Always assume ∅ ∈ K.

cat(K): category of K (simplices I ∈ K and inclusions I ⊂ J);

cdga: commutative di�erential graded algebras over Q;

top: pointed topological spaces.
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Given a sequence C = (C1, . . . ,Cm) of cdga's, de�ne the diagram

DK(C ) : cat(K)op → cdga, I 7→
⊗
i∈I

Ci ,

by mapping a morphism I ⊂ J to the surjection
⊗

i∈J Ci →
⊗

i∈I Ci

sending each Ci with i /∈ I to 1.

Proposition

Let Ci = Q[v ], the polynomial algebra on one generator of degree 2. Then

limDK(C) = Q[v1, . . . , vm]
/(

vj1 · · · vjk : {j1, . . . , jk} /∈ K
)
,

the face ring (the Stanley�Reisner ring) of K, denoted by Q[K].

Example

Let K = • • (two points). Then Q[K] = Q[v1, v2]/(v1v2).
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Let (X ,A) = {(X1,A1), . . . , (Xm,Am)} be a collection of m pairs of
spaces, Ai ⊂ Xi . For each subset I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I =
{

(x1, . . . , xm) ∈
m∏
j=1

Xj : xj ∈ Aj for j /∈ I
}
.

De�ne the diagram

DK(X ,A) : cat(K) −→ top,

I 7−→ (X ,A)I ,

which maps the morphism I ⊂ J of cat(K) to the inclusion of spaces
(X ,A)I ⊂ (X ,A)J .

The polyhedral product of (X ,A) corresponding to K is given by

(X ,A)K = colimDK(X ,A) = colim
I∈K

(X ,A)I .
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(X ,A)K =
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

Xi ×
∏
i /∈I

Ai

)
.

Notation: (X , pt)K = X
K.

If Xi = X and Ai = A for i = 1, . . . ,m, then (X ,A)K = (X ,A)K.

ZK = (D2, S1)K the moment-angle complex.
It has an action of the torus Tm.
Let K = • •. Then (D2, S1)K = D2 × S1 ∪ S1 × D2 ∼= S3.

DJ(K) = (CP∞, pt)K the Davis�Januszkiewicz space.

Proposition

There exists a homotopy �bration

ZK −→ DJ(K) −→ (CP∞)m

‖ ‖ ‖
(D2, S1)K (CP∞, pt)K (CP∞,CP∞)K
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It is often convenient to replace lim and colim by the homotopy invariant
functors holim and hocolim.

Proposition

(a) The diagram DK(C) is Reedy �brant. Therefore, there is a weak

equivalence limDK(C)
'−→ holimDK(C).

(b) The diagram DK(X,A) is Reedy co�brant whenever each Ai → Xi is a

co�bration (e.g. when (Xi ,Ai ) is a cellular pair). Under this condition,

there is a weak equivalence hocolimDK(X,A)
'−→ (X,A)K.

Proof.

(a) A cat
op(K)-diagram C is Reedy �brant when the canonical map

C(I )→ lim C|
cat

op(∂∆(I )) is a �bration for each I ∈ K. In our case,

DK(C )(I ) =
⊗
i∈I

Ci , limDK(C )|
cat

op(∂∆(I )) =
⊗
i∈I

Ci/I,

where I is the ideal generated by all products
∏

i∈I ci with ci ∈ C+
i . Hence

the �brance condition is satis�ed.
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Proof.

(b) A cat(K)-diagram D in top is Reedy co�brant whenever each map
colimD|

cat(∂∆(I )) → D(I ) is a co�bration. In our case,

colimDK(X ,A)|
cat(∂∆(I )) = (X ,A)∂∆(I )×A[m]\I , DK(X ,A)(I ) = (X ,A)I ,

so the Reedy co�brance condition is satis�ed.
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2. Formality of polyhedral products

A space X is (rationally) formal if the singular cochain algebra C ∗(X ;Q) is
weakly equivalent to its cohomology H∗(X ;Q) (viewed as a dga with zero
di�erential). That is, X is formal whenever there is a zig-zag of
quasi-isomorphisms

(C ∗(X ;Q), d)←− · · · −→ (H∗(X ;Q), 0).

Over Q or R one can choose a commutative model for C ∗(X ). When X is
a manifold, this is provided by the de Rham di�erential forms Ω∗(X ).

For arbitrary X , one uses Sullivan's algebra of piecewise polynomial
di�erential forms APL(X ), which is a commutative dga weakly equivalent to
C ∗(X ;Q).
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Theorem

If each space Xi in X = (X1, . . . ,Xm) is formal, then the polyhedral

product XK is also formal.

Proof.

By the properties of APL(X ), there is a canonical quasi-isomorphism

APL(XK) = APL colimI X
I '−→ limI APL(X I ).

Since each Xi is formal, there is a zigzag of quasi-isomorphisms
APL(Xi )← · · · → H∗(Xi ). Applying the previous Proposition for the case
Ci = APL(Xi ) and Ci = H∗(Xi ) we obtain that both the corresponding
diagrams DK(C ) are �brant, so their limits are weakly equivalent:

limI APL(X I )
'←− · · · '−→ limI H

∗(X I )

(we also use the fact that H∗(X I ) ∼=
⊗

i∈I H
∗(Xi ) with Q-coe�cients).

The proof is �nished by appealing to the isomorphism

limI H
∗(X I ) ∼= H∗(XK).
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Corollary

The Davis�Januszkiewicz space DJ(K) = (CP∞, pt)K is formal for any K.

The result cannot be extended to polyhedral products of the form (X ,A)K.
Although limI APL((X ,A)I ) is still a model for APL(X ,A)K, the
cat(K)op-diagram I 7→ H∗((X ,A)I ) is not �brant in general, and therefore
its limit is neither isomorphic to limI APL((X ,A)I ), nor to H∗((X ,A)K).

Indeed, the moment-angle complex ZK = (D2, S1)K is not formal in
general, as it may have nontrivial Massey products in cohomology
[Baskakov].
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3. Formality of quasitoric manifolds

A quasitoric manifold M = M(P, Λ) is determined by

a simple n-polytope P , and

a characteristic map Λ : Zm → Zn.

K = KP the dual triangulation of sphere Sn−1.

M can be identi�ed with the quotient ZK/K (Λ),
where ZK = (D2, S1)K is the moment-angle manifold corresponding to K,
and K (Λ) = Ker(Λ : Tm → T n) is a freely acting (m − n)-torus.

Results below are equally applicable to toric manifolds M (nonsingular
compact toric varieties), in which case K is the underlying complex of the
corresponding complete regular simplicial fan.
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We consider the elements

ti = λi1v1 + · · ·+ λimvm, 1 6 i 6 n,

in the face ring Q[K] = Q[v1, . . . , vm]/IK corresponding to the rows
of Λ = (λij).

Lemma

For a toric or quasitoric manifold M, the algebra APL(M) is weakly

equivalent to the commutative dg-algebra(
Λ[x1, . . . , xn]⊗Q[K], d

)
, with dxi = ti , dvi = 0.
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Proof.

We consider a catop(K)-diagram whose value on I ⊂ J is the quotient map(
Λ[x1, . . . , xn]⊗Q[vi : i ∈ J], d

)
→
(
Λ[x1, . . . , xn]⊗Q[vi : i ∈ I ], d

)
,

where dxi = ti and dxi = 0.
There are quasi-isomorphisms(

Λ[x1, . . . , xn]⊗Q[vi : i ∈ I ], d
) '−→ APL

(
(D2, S1)I/K (Λ)

)
which are compatible with the maps corresponding to inclusions of
simplices I ⊂ J and therefore provide a weak equivalence of Reedy �brant
diagrams in cdga. Their limits are therefore quasi-isomorphic, and we
obtain the required zigzag

APL(M) = APL

(
(D2,S1)K/K (Λ)

) '−→ limI APL

(
(D2, S1)I/K (Λ)

)
'←− limI

(
Λ[x1, . . . , xn]⊗Q[vi : i ∈ I ], d

)
=
(
Λ[x1, . . . , xn]⊗Q[K], d

)
.
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Theorem

Every toric or quasitoric manifold is formal.

Proof.

We use the model of the previous lemma and utilise the fact that Q[K] is
Cohen�Macaulay, i.e. Q[K] is free as a module over Q[t1, . . . , tn].

Hence ⊗Q[t1,...,tn]Q[K] is a right exact functor.

Applying it to the quasi-isomorphism
(Λ[u1, . . . , un]⊗Q[t1, . . . , tn], d)→ Q yields a quasi-isomorphism

(Λ[u1, . . . , un]⊗Q[K], d)
'−→ Q[K]/(t1, . . . , tn),

which is given by the projection onto the second factor.

Now Q[K]/(t1, . . . , tn) ∼= H∗(M) by the theorem of Davis and
Januszkiewicz, so the result follows from the previous lemma.
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Similar arguments apply to torus manifolds M with Hodd(M;Z) = 0.

In this case, Q[K] is replaced by the face ring Q[S] of the corresponing
simplicial poset S.

Note also that the formality of projective toric manifolds follows
immediately from the fact that they are K�ahler.
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