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Today’s talk

® Isovariant maps and isovariant Borsuk-Ulam type
theorems.
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(1) Isovariant maps and isovariant Borsuk-Ulam type theorems

Let G be a compact Lie group and X, Y G-spaces. All maps
between spaces are assumed to be continuous.

Definition

A map f: X — Y is called a G-isovariant map if f is G-equivariant
and preserves the isotropy subgroups, i.e., Gr() = Gx for all x € X.

Note. If f is a G-map, then Gx < Gg(y).
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The notion of an isovariant map was introduced by Palais in order to
classify orbit maps p : X — X/G. After Palais, isovariant maps are
used to study a classification problem of G-manifolds, especially in
isovariant or stratified surgery theory.

A simple but important fact is that an isovariant map preserves the
orbit structures.

Proposition
Let f : X — Y be a G-map. The following are equivalent.
® f: X — Y is G-isovariant.

@ fig(x): G(x) — G(f(x)) C Y is bijective for any x € X, where
G(x) = {gx|g € G} is the orbit of x.
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Definition (Representation space)
@ Let p: G — O(n) be a representation homomorphism. Then a
G-representation (space) V (= R") is defined by gx = p(g)x,
xeV.

® Let denote by SV the unit sphere of V/, called a representation
sphere.

In this talk, we focus on representations or representation spheres,
because representations are basic (local) objects in transformation
group theory, i.e., a smooth G-action on a manifold M is locally

linear.
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Problem

How are (topological or algebraic) invariants of G-representations
related if there exits an isovariant map between G-representations?

A similar problem can be considered for equivariant maps between
representation spheres with G-fixed point free actions.

6
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First we remark the following.

e If there is xo € SWC, then the constant map Cp: V— Wor
SV — SW is always equivariant. So, representation spheres with
G-fixed point free actions are considered in the existence
problem of equivariant maps.

e On the other hand, ¢, is not isovariant unless V' has trivial
action. In isovariant case, it is meaningful to consider the
existence problem of isovariant maps between representations.

~
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Isovariant maps
between representations or representation spheres

Proposition
The following are equivalent.
® 3 G-isov. f:V — W.
@® 3 G-isov. f:V —VC - W-W°.
® 3 G-isov. f:S(V —VC) = S(W - W°).
Here V — V'€ s the orthogonal complement of V¢ as a
G-subrepresentation in V.

Corollary
If VG = WG =0, then

3 G-isov. f: V- W <= 3 G-isov. f: SV — SW
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Proof. Put V+ =V — VG,
(1)=(2)=(3)

FoviLv i w®wt

Fos(vh Lovi oo Lowt <o) e sowt

g:S(Vt) = s(wh)

g:V+ — W' radial extension

h=ga0:V=ViaVe s Wtewt=w
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Borsuk-Ulam type results in isovariant setting

A fundamental topological invariant is dimension. Borsuk-Ulam type
theorems give some relations of dimensions. For example, the
following is well known.

Theorem (Borsuk-Ulam theorem for free C,-spheres)

Suppose that C, acts freely on spheres S", S™, p: prime. If there
exists a Cp,-map f : S" — S™, then n < m.

Remark

If G acts freely on S, §™, then the Borsuk-Ulam theorem still holds.

This is clear if the action is restricted to a subgroup Cp.
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Using this theorem, we obtain an isovariant version of the
Borsuk-Ulam theorem.

Proposition

Let G = C,, p: prime., or S1. Let V and W be G-representations. If
there exists a G-isovariant map f : V. — W (or f : SV — SW), then

dim(V — V&) < dim(W — W©).
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Proof (Case 1: G = ()

Set V1 =V — V% and Wt =W — W%, From f, we can construct
a Cp-isovariant map f : S(V+) — S(W+) as follows.

Foviiviw®wt
Fos(vh) Lovi o) S wt < {o) P sow.
Since C, acts freely on S(V1) and S(W+), we have
dim S(V+) < dim S(W).

Thus
dim(V — V&) < dim(W — W%).
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Proof (Case 2: G = S?)

In general a G-representation has finitely many conjugacy classes of
isotropy subgroups.
We can take a sufficiently large prime p such that

VG = vS' and W& = wS'.

Restricting the action, we have a Cj-isovariant map resc,f : V — W.
By case 1, we have dim(V — V&%) < dim(W — W) and this implies

dim(V — V') < dim(W — W*").
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More generally, by induction, the following is essentially proved by
Wasserman.

Theorem (Isovariant Borsuk-Ulam theorem)

Let G be a solvable compact Lie group. If there exists a G-isovariant
map f:V — W (or f:SV — SW), then

dim(V — V¢ < dim(W — W©).

Remark
A solvable compact Lie group G is characterized as the existence of a
composition series

1=Gy <G <---19G, =G

such that G;/G;_1 is a cyclic group of prime order or S*.

14 /40



Comments on equivariant case

Borsuk-Ulam type theorems in equivariant case have been studied by
many people. For example the following result is deduced from their
studies.

Theorem

Let G = Cil,‘ or TK. Suppose that G acts G-fixed point freely on S"
and S™. If there exits a G-map f : S" — S™, then n < m.

On the other hand, Waner gave a counterexample for a cyclic group
not of prime power order. Furthermore, Bartsch proved that, for
finite group G, a Borsuk-Ulam type theorem holds (in a weak sense)
iff G is of prime power order.
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Example — Waner’s counterexample

Let G = C, be a cyclic group of order n and let ¢ be a generator of
Cpn. Let Uk (= C) denote the (unitary) irreducible representation of
C, on which c acts by ¢ -z = ¢z, where 0 < k < n—1 and z € Uy

and &, = exp(2mv/—1/n).

Proposition

Assume that n is divided by distinct primes p and q. Then for any
positive integer k, there exists a C,-map

f:S(UFo U, ® Uy) — S(U, @ Uy).

Remark

By the isovariant Borsuk-Ulam theorem, the above C,-map f is never
isovariant.

16

40



What about non-solvable groups?

Definition
A compact Lie group G is called a Borsuk-Ulam group (BUG) if the
isovariant Borsuk-Ulam theorem holds for G-representations.

Wasserman conjectures that all finite groups are BUGs. In fact, a
counterexample is not known at present.

But there are some partial results.

Remark
If we permit a non-linear action on a Euclidean space or a sphere,
there is a counterexample when G is non-solvable.
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An odd order group is solvable by the Feit-Thompson theorem and so
it is a BUG. Using other deep results in finite group theory, we can
find new families of BUGs which include non-solvable groups.

Let G, denote a p-Sylow subgroup of a finite group G.
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An odd order group is solvable by the Feit-Thompson theorem and so
it is a BUG. Using other deep results in finite group theory, we can
find new families of BUGs which include non-solvable groups.

Let G, denote a p-Sylow subgroup of a finite group G.

Theorem (N-Ushitaki)
A finite group G satisfying one of the following conditions is a BUG.
® Gy is cyclic. (In this case, G is solvable.)
® Gy = D,s: dihedral group of order 2°, s > 2, where
Dy = G x G, eg. PSL(2,p").
© G = Qos: generalized quaternion group of order 2°, s > 3, e.g.
SL(2,p").
@ G is abelian and Gy is cyclic for each odd prime p, e.g. Janko
group J; whose order is23-3-5-7-11-19.
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Compact Lie group case

Unfortunately, (non-trivial) connected BUGs are not known except a
torus T".

However, a weaker version of the isovariant Borsuk-Ulam theorem
holds.

Theorem (Weak isovariant Borsuk-Ulam theorem)

For an arbitrary compact Lie group G (not necessarily connected),
there exists a constant 0 < ¢ < 1 such that if there exists a
G-isovariant map f : V — W, then the inequality

cdim(V — V) <dim(W — W°)

holds.
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Definition
Let cg be the maximum of a constant ¢ as in the above theorem.

Clearly cg =1 if and only if G is a BUG. Hence if G is solvable, then
CcG = 1.

Example

If G = SO(3) or SU(2), then 2 < cg < 1.
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(1) Bi-isovariantly equivalent representations

The next topic is about bi-isovariantly equivalent representations. We
would like to consider relation to the dimension function of a
representation.

Definition

G-representations V' and W are bi-isovariantly equivalent if there

exist G-isovariant maps f : V — W and g: W — V. In the case we
write V =¢ W.

Definition

Let S(G) be the set of closed subgroups of G. For a G-representation
V, the dimension function Dim V : S(G) — Z is defined by

(Dim V))(H) = dim V"
for H € 5(G).
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Theorem (N-Ushitaki)
Let G be an arbitrary compact Lie group. If V. =¢ W, then

Dim(V — V®) = Dim(W — W©).

Recall that V — V@ is the orthogonal complement of V¢ in V.



Theorem (N-Ushitaki)
Let G be an arbitrary compact Lie group. If V. =¢ W, then

Dim(V — V®) = Dim(W — W¢)

Recall that V — V@ is the orthogonal complement of V¢ in V.

Proof (outline)
Case 1: G a finite group.

Applying the isovariant Borsuk-Ulam theorem to a C-isovariant map
rescf : V — W and rescg : W — V, we have

dim V — dim VS = dim W — dim W€

for all cyclic subgroups C of G.
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Proof (continued)
For any subgroup H, set

d(H) = |H|(dim W — dim WH — dim V + dim VH).
Using character theory, we have
dH)= ) > w(C.D)]d(C),
CeCy(H) \ C<DeCy(H)

where 1 is the Mobius function on Cy(H) the set of cyclic subgroups
of H. Since d(C) = 0, we see that d(H) =0 for any H < G.
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Proof (continued)

In particular,
dim W — dim V = dim W" — dim V¥ = dim W% — dim V©.

So we have
dim(V — VO = dim(Ww — w®)".
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Proof (continued)

Case 2: G a compact Lie group.

A theorem of Traczyk below says that

V — Ve = W — W% as G-representations. Hence their dimension

functions coincide.

On the other hand V% and W are regarded as
G/ Go-representations and V/ ¢ =6/G W, By case 1, V% — V©
and W% — WS have the same dimension function. Thus we see

Dim (V — V) = Dim (W — W©).

Theorem (Traczyk)

If diim V¢ = dim WC for every (finite) cyclic subgroup C, then
V-V =W — W%, where Gy is the identity component.
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Corollary

Waner studied the existence problem of equivariant maps from a
G-representation sphere SV to its subrepresentation sphere SW
(where V€ =0 and G is finite) :

f:S5V—-SWcSV.

In this case, he gave a necessary and sufficient condition for the
existence of an equivariant map in terms of the Burnside ring.

Using this result, one can find a counterexample of Borsuk-Ulam
theorem for C,, as mentioned before.

26
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Let us consider an isovariant version of Waner's setting. We can see
the following.

Corollary

Let G be a compact Lie group and assume that V¢ =0 (for
simplicity).

If there is an isovariant map f : V — U C V (or

f:SV — SUCSV) then U=V, ie, there is no isovariant map to
a proper subrepresentation.

Proof

Since the inclusion i : U — V is isovariant, V and U are
bi-isovariantly equivalent. Hence we have Dim V = Dim U and in
particular dim V = dim U. Hence V = U.
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Does the converse hold?

Let us consider the converse of the above theorem, i.e., when
Dim (V — V¢) = Dim (W — W?), do there exist isovariant maps
bi-directionally? In abelian case, we can see the following.

Theorem
If G is an abelian compact Lie group, then the converse holds. Thus

V=cW <= Dim(V - V®) = Dim(W — W°).
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Proof (Outline of <)

e Decompose V = @k<cV(K) and W = &< W(K), where
V(K) [resp. W(K)] is the direct sum of irreducible
representations in V [resp. W] with kernel K.

e Show that if K # G, then Dim V(K) = Dim W(K) and
that G/K is finite cyclic or ST if V(K) # 0 or W(K) # 0.

e So the problem is reduced to the cyclic or S1 case, but in this
case, one can easily construct isovariant maps.
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On the other hand, in non-abelian case, the converse does not
necessarily hold. We give a simple example.

Let Dy, = (a,b|a" = b?> =1,bab! = a7 1), n >3, and set

Co = (a), DY) = (alb) = G, for 0 < i < n.

Consider the (real) 2-dimensional D;,-representation V) = C defined
by az = Kz, &, = exp % and bz = z for z € V. Suppose that k
is a positive integer less than n/2 and prime to n.

Then C, acts freely on Vi ~ {0} and all V) have the same dimension
function; indeed,

2 H=1
dimV}l ={1 H=Dp{

0 otherwise.
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We can see the following.
Proposition

Suppose that n > 5 and n # 6 and 0 < k, | < n/2 are integers prime

to n. Then if k # |, then there does not exist a D,,-isovariant map
from Vi to V.

Remark
There exists a Dy,-map f : SV — SV,.
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Sketch of proof

We illustrate it when n=5, k=1 and | = 2.

(a’b)  {a’) (a*b)  (ab)

(a*b) (ab) (a®b) (a®b)

Vi Va
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Sketch of proof

We illustrate it when n=5, k=1 and | = 2.

(a’b)  {a’) (a*b)  (ab)

(a*b) (ab) (a®b) (a®b)

Vi — Vo
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Bi-isovariant rigidity

By a further argument, we have

Proposition
Let V and W be 2-dimensional D,,-representations, n > 3. Then

Ve=p, W <= V- VPr=w_ Wb

We call this property the bi-isovariant rigidity.
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Proposition
@ Let G be a compact Lie group and Gy the identity component.

Ve W (a) V& =g/ W,
(b) V— Ve =W - W% as G-reps.

® In particular if G is connected, then the bi-isovariant rigidity
holds:
VaeW = V-Veixw_—Wwe.

Proof

(1) (=) By Go-fixing, we have (a). By our theorem

Dim (V — V%) = Dim (W — W¢) and

Dim (V% — V&) = Dim (W% — W¢). Hence we have

Dim (V — V%) = Dim (W — W®). By Traczyk's theorem, we have
(b)-

(«=) Straightforward.
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Corollary
If G/Gg is abelian, then

(a) Dim (V¢ — V©) = Dim(W®% — W¢)

V=W
¢ {(b) V- Ve =W W as G-reps.
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Other examples of bi-isovariant rigidity

Let G be a finite group. As a result of representation theory,
G-representations with the same dimension function are characterized
as follows.

Proposition

LetV=Vi®---®V,and W =W, & --- P Ws be irreducible
decompositions of G-representations V and W respectively. Then
DimV = Dim W if and only if r = s and every irreducible summand
Vi is Galois conjugate to W, ;) for some permutation o of

{1,2,...,r}.

(Rem: This result is found in papers of Lee-Wasserman and tom
Dieck.)
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Definition

Let n be the exponent of G and &, a primitive nth root of unity.
We say that V and W are Galois conjugate if there exists a field
automorphism 1 on the cyclotomic field Q(&,) such that

Y(xv(g)) = xw(g) for every g € G, where xy denotes the
character of a G-representation V.

Then the Galois group I := Gal(Q(&,)/Q) = (Z/n)* acts on the set
Irr(G,R) of real irreducible G-representations.

Remark

Since complex conjugate ¢ in I, which corresponds to —1 € (Z/n)*,
acts trivially on Irr(G,R). Hence I'/(c) = (Z/n)*/ £ 1 acts on
Irr(G,R).
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Theorem

Let G be a compact Lie group. Suppose that I /{(c) acts trivially on

Ir(G/Go,R). Then bi-isovariant rigidity holds for G-representations.

Proof

By previous propositions, if V = W, then we have
V- VG =W - W% and VG — VG = WG — WGE Hence
V — V& >~ W — WEC. The converse is trivial.

Corollary

If the characters of V% and W% are integer-valued, then
VaeW <= V-Ve=Ww - We.
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Example

If G/Gp satisfies one of the following, then bi-isovariant rigidity holds
for G-representations.

® G/Gy =S, the symmetric group. (Indeed, any S,-representation
is rational.) More generally, if G/Gp is isomorphic to the Weyl

group of some compact Lie group, then bi-isovariant rigidity
holds.

® G/Gy= Ckx C, C¥ x CJ, Qs, etc. (Indeed, ['/{c) itself is
trivial.)
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