On the extension of torus actions on GKM manifolds

Shintarô Kuroki (joint work w/ Mikiya Masuda)

kuroki@ms.u-tokyo.ac.jp http://www.ms.u-tokyo.ac.jp/ kuroki/ The University of Tokyo

14th November 2014 The 41th Symposium on Transformation Groups (Gamagori civic hall in Aichi prefecture)

$\S1$ Introduction

Definition (Hattori-Masuda)

Let *M* be a 2*n*-dim mfd with *n*-dim torus *T*-action. Then, *M* (or (M, T)) is called a torus manifold if $M^T \neq \emptyset$.

・ロト ・聞ト ・ ヨト ・ ヨト

$\S1$ Introduction

Definition (Hattori-Masuda)

Let *M* be a 2*n*-dim mfd with *n*-dim torus *T*-action. Then, *M* (or (M, T)) is called a torus manifold if $M^T \neq \emptyset$.

Example (torus mfds)

•
$$T^n \curvearrowright S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R} \Rightarrow M^T = \{(0,1), (0,-1)\}.$$

- $T^n \curvearrowright \mathbb{C}P^n = (\mathbb{C}^{n+1} \{O\})/\mathbb{C}^*$ (on last $n \text{ coord}) \Rightarrow M^T = \{[1:0:\cdots:0], \ldots, [0:\cdots:0:1]\}.$
- (Quasi)toric. (S^{2n} , $n \ge 2$, is NOT (quasi)toric)

$\S1$ Introduction

Definition (Hattori-Masuda)

Let *M* be a 2*n*-dim mfd with *n*-dim torus *T*-action. Then, *M* (or (M, T)) is called a torus manifold if $M^T \neq \emptyset$.

Example (torus mfds)

•
$$T^n \curvearrowright S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R} \Rightarrow M^T = \{(0,1), (0,-1)\}.$$

- $T^n \curvearrowright \mathbb{C}P^n = (\mathbb{C}^{n+1} \{O\})/\mathbb{C}^*$ (on last $n \text{ coord}) \Rightarrow M^T = \{[1:0:\cdots:0],\ldots,[0:\cdots:0:1]\}.$
- (Quasi)toric. (S^{2n} , $n \ge 2$, is NOT (quasi)toric)

Definition (Guillemin-Holm-Zara)

 M^{2m} (or (M^{2m}, T^n)) is called a GKM manifold if 1-skelton M_1/T has the structure of a graph, where $M_1 = \{x \in M \mid \dim T(x) \le 1\}$.

Example (GKM mfds)

• A torus mfd (M, T) (if n = m) and some restricted T^k -action (k < m), e.g., $T^2 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2) \mapsto (t_1, t_2, t_1t_2)$ is the restriction of $T^3 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2, t_3) \mapsto (t_1, t_2, t_3)$.

Figure: Graph of the torus mfd ($\mathbb{C}P^3$, T^3) and the GKM mfd ($\mathbb{C}P^3$, T^2).

• A homogeneous sp (G/H, T), where $T \subset H \subset G$.

Figure: Graph of $(SU(4)/S(U(2) \times U(2)), T^3)$.

S. Kuroki (U of Tokyo)

Extensions of GKM mfds

Motivational examples and Problems

Some T^n -actions are induced from G-actions or T^{ℓ} -actions $(n < \ell)$ Example

- $T^n \curvearrowright S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R} \simeq \mathbb{R}^{2n+1}$ is induced from $SO(2n+1) \curvearrowright S^{2n}$.
- $T^n \curvearrowright \mathbb{C}P^n = (\mathbb{C}^{n+1} \{O\})/\mathbb{C}^*$ is induced from $PU(n+1) \curvearrowright \mathbb{C}P^n$, where PU(n+1) = SU(n+1)/center.
- $T^2 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2) \mapsto (t_1, t_2, t_1t_2)$ is induced from the natural $T^3 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2, t_3) \mapsto (t_1, t_2, t_3)$.

Motivational examples and Problems

Some T^n -actions are induced from G-actions or T^{ℓ} -actions $(n < \ell)$ Example

- $T^n \curvearrowright S^{2n} \subset \mathbb{C}^n \oplus \mathbb{R} \simeq \mathbb{R}^{2n+1}$ is induced from $SO(2n+1) \curvearrowright S^{2n}$.
- $T^n \curvearrowright \mathbb{C}P^n = (\mathbb{C}^{n+1} \{O\})/\mathbb{C}^*$ is induced from $PU(n+1) \curvearrowright \mathbb{C}P^n$, where PU(n+1) = SU(n+1)/center.
- $T^2 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2) \mapsto (t_1, t_2, t_1t_2)$ is induced from the natural $T^3 \curvearrowright \mathbb{C}P^3$ by $(t_1, t_2, t_3) \mapsto (t_1, t_2, t_3)$.

Problem

When does (M^{2m}, T^n) extend to (M^{2m}, G) (Prob1) or (M^{2m}, T^{ℓ}) (Prob2)? Here, $(m \ge)\ell \ge n$ and G is a cpt Lie gr with $T^n \subset G$ (maximal).

Related works and main theorems

- 1970 Demazure \cdots Aut(X) of toric X.
- 2007 Kuroki · · · cohomogeneity one (and homogeneous) torus mfds.
- 3 2010 Masuda · · · symplectic toric, quasitoric.
- 2012 Wiemeler · · · characterization of torus mfds with extended actions.

Remark

Works 2, 4 characterized extended actions directly. Works 1, 3 characterized them by root systems of combinatorial objects (fan, polytope).

• 2004 Shunji Takuma defines a combinatorial obstruction for the extension from (M^{2m}, T^n) to (M^{2m}, T^{n+1}) (unpublished).

S. Kuroki (U of Tokyo)

5 / 25

GOAL

Define invariants in GKM (and torus) graphs and solve problems.

3

(日) (周) (三) (三)

GOAL

Define invariants in GKM (and torus) graphs and solve problems.

Theorem 1 (K-Masuda, Wiemeler)

If $T \curvearrowright M$ (torus mfds) extends to $G \curvearrowright M$ and $G \approx G_1 \times \cdots \times G_\ell \times T'$, then G_i is locally isom to

- $SU(n_i + 1)$ (type A_{n_i});
- *SO*(2*n_i* + 1) (*type B_{n_i}*);
- $SO(2n_i)$ (type D_{n_i}).

Theorem 2 (K, a generalization of Takuma's work)

If $T^n \curvearrowright M^{2m}$ (almost cpx GKM mfds) extends to $T^{\ell} \curvearrowright M^{2m}$ for $n \leq \ell$, then the following holds:

• $\ell \leq \operatorname{rk} \mathcal{O}(c_{(\Gamma_M, \mathcal{A}_M)}),$

where $\mathcal{O}(c_{(\Gamma_M,\mathcal{A}_M)})$ is the free \mathbb{Z} -module induced from (M, T^n) .

$\S2$ Torus graph [MMP] and GKM graph [GZ]

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be an <u>m-valent graph</u>, i.e., $\#E_p(\Gamma) = m$ for all $p \in V(\Gamma)$.

Figure: Two 3-valent graphs and one 4-valent graph.

$\S2$ Torus graph [MMP] and GKM graph [GZ]

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be an <u>m-valent graph</u>, i.e., $\#E_p(\Gamma) = m$ for all $p \in V(\Gamma)$.

Figure: Two 3-valent graphs and one 4-valent graph.

Definition

A <u>GKM graph</u> (torus graph) is a labelled graph (Γ , A), where a label $\mathcal{A} : \overline{E}(\Gamma) \to H^2(\overline{BT^n}) \simeq \mathbb{Z}^n$ for $1 \le n \le m$ (n=m) satisfies the following conditions:

Axial function $\mathcal{A}(I)$

 $\mathcal{A}: E(\Gamma) \to H^2(BT^n) \simeq \mathbb{Z}^n$ (called axial function) satisfies the following 3 conditions:

(1) $\mathcal{A}(pq) = -\mathcal{A}(qp) \ (\mathcal{A}(pq) = \pm \mathcal{A}(qp))$

(2) $\{\mathcal{A}(e) \mid e \in E_{\rho}(\Gamma)\}$ spans \mathbb{Z}^n and pairwise linearly indep.

where $H^2(BT^3) = \langle \alpha, \beta, \gamma \rangle$.

Axial function \mathcal{A} (II) and Examples

(3) $\forall pq \in E(\Gamma), \exists$ a bijection $\nabla_{pq} : E_p(\Gamma) \to E_q(\Gamma)$ which satisfies $\forall e \in E_p(\Gamma), \exists c_{pq}(e) \in \mathbb{Z} \text{ s.t. } \mathcal{A}(\nabla_{pq}(e)) - \mathcal{A}(e) = c_{pq}(e)\mathcal{A}(pq).$ $(\nabla = \{\nabla_e \mid e \in E(\Gamma)\} \text{ is called a connection})$

Axial function \mathcal{A} (II) and Examples

(3) $\forall pq \in E(\Gamma), \exists$ a bijection $\nabla_{pq} : E_p(\Gamma) \to E_q(\Gamma)$ which satisfies $\forall e \in E_p(\Gamma), \exists c_{pq}(e) \in \mathbb{Z} \text{ s.t. } \mathcal{A}(\nabla_{pq}(e)) - \mathcal{A}(e) = c_{pq}(e)\mathcal{A}(pq).$ $(\nabla = \{\nabla_e \mid e \in E(\Gamma)\} \text{ is called a connection})$

Example

Examples

The GKM (torus) graph (Γ_M , A_M) of GKM (torus) mfd (M, T) can be defined by

- $V(\Gamma_M)$ is M^T ;
- $E(\Gamma_M)$ is invariant S^2 's;
- $\mathcal{A}_{\mathcal{M}} : E(\Gamma_M) \to H^2(BT)$ is tangential representation on T_pM for all $p \in M^T$.

GKM (torus) graph of $T^2 \curvearrowright \mathbb{C}P^2$ by $[x : y : z] \mapsto [x : t_1y : t_2z]$.

Tangential rep.'s are

$$T_{p}M \simeq V(\alpha) \oplus V(\beta);$$

$$T_{q}M \simeq V(-\alpha) \oplus V(\beta - \alpha);$$

$$T_{r}M \simeq V(-\beta) \oplus V(-\beta + \alpha).$$

Remark

 $(\Gamma_M, \mathcal{A}_M)$ induced from a torus mfd (M^{2n}, T^n) is torus graph, $(\Gamma_M, \mathcal{A}_M)$ induced from an (almost cpx) GKM mfd (M^{2m}, T^n) is GKM graph.

$\S3$ 1st main results –Root systems of torus graphs–

Let (Γ, A) be a GKM (torus) graph. Equivariant cohomology $H^*_T(\Gamma, A)$ is defined by

 $\{f: V(\Gamma) \to H^*(BT) \mid f(p) - f(q) \equiv 0 \mod \mathcal{A}(pq)\}.$

$\S3$ 1st main results –Root systems of torus graphs–

Let (Γ, A) be a GKM (torus) graph. Equivariant cohomology $H^*_T(\Gamma, A)$ is defined by

 $\{f: V(\Gamma) \to H^*(BT) \mid f(p) - f(q) \equiv 0 \mod \mathcal{A}(pq)\}.$

FACT 1 $H^*_T(\Gamma, \mathcal{A})$ has the $H^*(BT)$ -alg. structure by $\pi^* : H^*(BT) \to H^*_T(\Gamma, \mathcal{A})$ s.t. $\pi^*(\alpha) = \alpha$ (constant map).

12 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\S3$ 1st main results –Root systems of torus graphs–

Let (Γ, A) be a GKM (torus) graph. Equivariant cohomology $H^*_T(\Gamma, A)$ is defined by

 $\{f: V(\Gamma) \to H^*(BT) \mid f(p) - f(q) \equiv 0 \mod \mathcal{A}(pq)\}.$

FACT 1

 $H^*_T(\Gamma, \mathcal{A})$ has the $H^*(BT)$ -alg. structure by $\pi^* : H^*(BT) \to H^*_T(\Gamma, \mathcal{A})$ s.t. $\pi^*(\alpha) = \alpha$ (constant map).

Theorem (Goresky-Kottwictz-MacPherson, Masuda-Panov) If $H^{odd}(M) = 0$, then $H^*_T(M) \simeq H^*_T(\Gamma_M, \mathcal{A}_M)$. (\mathbb{Z} -coeff for torus mfds, \mathbb{Q} -coeff for GKM mfds)

S. Kuroki (U of Tokyo)

Let (Γ, \mathcal{A}) be a torus graph.

FACT 2 [Maeda-Masuda-Panov] $H^2_T(\Gamma, \mathcal{A}) \simeq \bigoplus_{K \subset \Gamma} \mathbb{Z}\tau_K.$

Here, K runs through all (n-1)-valent torus subgraphs. Thom class $\tau_K : V(\Gamma) \to H^2(BT) \in H^*_T(\Gamma, \mathcal{A})$ is defined by the normal axial fcts of K.

Figure: $\tau_{\mathcal{K}}(p) = \alpha$, $\tau_{\mathcal{K}}(q) = 0$, $\tau_{\mathcal{K}}(r) = \alpha - \beta$.

Root system (review)

Definition (Root system)

Let $R \subset \mathbb{R}^n$ be a set of vectors s.t.

• R spans \mathbb{R}^n ;

•
$$\alpha$$
, $k\alpha \in R$ ($k \in \mathbb{R}$) $\Rightarrow k = \pm 1$;

• $\alpha, \ \beta \in R \Rightarrow r_{\alpha}(\beta) \in R \ (r_{\alpha} \text{ is the reflection along } \alpha);$

•
$$r_{\alpha}(\beta) = \beta - a_{\beta,\alpha}\alpha \Rightarrow a_{\beta,\alpha} \in \mathbb{Z}.$$

Example

For
$$T \subset G$$
, $T \curvearrowright \mathfrak{g} = \mathfrak{t} \oplus \oplus_{i=1}^m V(\alpha_i)$.
Then, $R(G) = \{\pm \alpha_i\}$ is the root system (of G).

イロト イポト イヨト イヨト

- 3

Suppose $T \curvearrowright M$ (torus mfd) extends to $G \curvearrowright M$. Then,

イロト 不得 トイヨト イヨト 二日

Suppose $T \curvearrowright M$ (torus mfd) extends to $G \curvearrowright M$. Then,

• $N_G(T)/T = W(G) \curvearrowright \{M_1, \ldots, M_m\}$ (codim 2 torus submfds)

15 / 25

Suppose $T \curvearrowright M$ (torus mfd) extends to $G \curvearrowright M$. Then,

- $N_G(T)/T = W(G) \curvearrowright \{M_1, \ldots, M_m\}$ (codim 2 torus submfds)
- So, $W(G) \curvearrowright H^2_{\tau}(M) \simeq H^2_{\tau}(\Gamma_M, \mathcal{A}_M) \simeq \bigoplus_{i=1}^m \mathbb{Z}\tau_i$ preserves τ_i 's up to sign.

15 / 25

Suppose $T \curvearrowright M$ (torus mfd) extends to $G \curvearrowright M$. Then,

- $N_G(T)/T = W(G) \curvearrowright \{M_1, \ldots, M_m\}$ (codim 2 torus submfds)
- So, $W(G) \curvearrowright H^2_{\tau}(M) \simeq H^2_{\tau}(\Gamma_M, \mathcal{A}_M) \simeq \bigoplus_{i=1}^m \mathbb{Z}\tau_i$ preserves τ_i 's up to sign.
- Moreover, $W(G) \curvearrowright H^2(M)$ trivial (so G is connected).

Lemma (FACT 3)

Let $\alpha \in R(G) \subset \mathfrak{t}^* \simeq H^2(BT)$ and $r_\alpha \in W(G)$ be its reflection. Then, $r_\alpha : \bigoplus_{i=1}^m \mathbb{Z}\tau_i \to \bigoplus_{i=1}^m \mathbb{Z}\tau_i$ is one of the followings:

•
$$\mathbf{r}_{\alpha}(\tau_i) = -\tau_i, \ \mathbf{r}_{\alpha}(\tau_k) = \tau_k \text{ for } k \neq i;$$

•
$$r_{\alpha}(\tau_i) = \tau_j, \ r_{\alpha}(\tau_k) = \tau_k \text{ for } k \neq i, j;$$

Moreover, $\varphi^*(\alpha)$ is one of the followings (respectively):

1
$$\pm \tau_i$$
;

2
$$\pm (\tau_i - \tau_j);$$

$$(\mathbf{3} \pm (\tau_i + \tau_j) .$$

where $\varphi : ET \times_T M \to BT$.

16 / 25

イロト イポト イヨト イヨト 二日

Root systems of torus graphs

Definition (Root systems of (Γ, A))

We call the following set, say $R(\Gamma, A)$, a root system of a torus graph (Γ, A) : $\{\alpha \in H^2(BT) \mid \pi^*(\alpha) = \pm \tau_i, \pm (\tau_i - \tau_j), \text{ or } \pm (\tau_i + \tau_j)\}.$

Example

$$R(\Gamma_{\mathbb{C}P^2}, \mathcal{A}_{\mathbb{C}P^2}) = \{\pm \alpha, \pm \beta, \pm (\alpha - \beta)\}.$$

★ 3 > < 3 >

Main theorem 1

Let Φ be an irreducible subsystem of $R(\Gamma, \mathcal{A})$ and Δ be its basis.

Theorem (K-Masuda)

 Φ is of type A, B or D. More precisely,

• • is of type $B \iff \exists \alpha \in \Phi \text{ s.t. } \pi^*(\alpha) = \tau_i$,

2 Φ is of type $D \iff \exists \alpha \in \Phi \text{ s.t. } \pi^*(\alpha) = \tau_i$; moreover, $\exists \alpha, \beta \in \Delta \text{ s.t. } \pi^*(\alpha) = \tau_i - \tau_j \text{ and } \pi^*(\beta) = \tau_i + \tau_j$;

3
$$\Phi$$
 is of type $A \iff$ *otherwise.*

Remark

We also have $R(G) \subset R(\Gamma_M, A_M)$ if there is a torus manifold (M, T) with an extended action (M, G).

(日) (周) (三) (三)

3

§4 2nd main results -Obstruction of extension of GKM graphs-

Let (Γ, \mathcal{A}) be an *m*-valent GKM graph.

19 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

§4 2nd main results

-Obstruction of extension of GKM graphs-

Let (Γ, \mathcal{A}) be an *m*-valent GKM graph.

Problem (Combinatorial interpretation of $(M^{2m}, T^n) \Rightarrow (M^{2m}, T^{\ell})$) When does $\mathcal{A} : E(\Gamma) \rightarrow H^2(BT^n)$ ((m, n)-type) extend to $\widetilde{\mathcal{A}} : E(\Gamma) \rightarrow H^2(BT^{\ell})$ ((m, ℓ)-type)? Here, $n \leq \ell \leq m$.

19 / 25

$\S4$ 2nd main results

-Obstruction of extension of GKM graphs-

Let (Γ, \mathcal{A}) be an *m*-valent GKM graph.

Problem (Combinatorial interpretation of $(M^{2m}, T^n) \Rightarrow (M^{2m}, T^{\ell})$) When does $\mathcal{A} : E(\Gamma) \rightarrow H^2(BT^n)$ ((m, n)-type) extend to $\widetilde{\mathcal{A}} : E(\Gamma) \rightarrow H^2(BT^{\ell})$ ((m, ℓ)-type)? Here, $n \leq \ell \leq m$.

Example

Key fact

Let $(\Gamma, \widetilde{\mathcal{A}})$ be an (m, ℓ) -type extension of (m, n)-type (Γ, \mathcal{A}) .

Key fact

Let (Γ, \widetilde{A}) be an (m, ℓ) -type extension of (m, n)-type (Γ, A) . FACT 4 [Takuma]

The integer $c_{pq}(e)$ of the condition (3) does NOT change! Namely, $\forall e \in E_p(\Gamma), \exists c_{pq}(e) \in \mathbb{Z} \text{ s.t.}$

$$\begin{split} \mathcal{A}(\nabla_{pq}(e)) - \mathcal{A}(e) &= c_{pq}(e)\mathcal{A}(pq) \text{ for } (\Gamma, \mathcal{A}), \\ \widetilde{\mathcal{A}}(\nabla_{pq}(e)) - \widetilde{\mathcal{A}}(e) &= c_{pq}(e)\widetilde{\mathcal{A}}(pq) \text{ for } (\Gamma, \widetilde{\mathcal{A}}). \end{split}$$

20 / 25

Key fact

Let (Γ, \widetilde{A}) be an (m, ℓ) -type extension of (m, n)-type (Γ, A) . FACT 4 [Takuma]

The integer $c_{pq}(e)$ of the condition (3) does NOT change! Namely, $\forall e \in E_p(\Gamma), \exists c_{pq}(e) \in \mathbb{Z} \text{ s.t.}$

$$\begin{split} \mathcal{A}(\nabla_{pq}(e)) - \mathcal{A}(e) &= c_{pq}(e)\mathcal{A}(pq) \text{ for } (\Gamma, \mathcal{A}), \\ \widetilde{\mathcal{A}}(\nabla_{pq}(e)) - \widetilde{\mathcal{A}}(e) &= c_{pq}(e)\widetilde{\mathcal{A}}(pq) \text{ for } (\Gamma, \widetilde{\mathcal{A}}). \end{split}$$

Thus, the map

 $c_{(\Gamma,\mathcal{A})}: E(\Gamma) \to \mathbb{Z}^m$ s.t. $c_{(\Gamma,\mathcal{A})}(pq) = (c_{pq}(e_1), \dots, c_{pq}(e_m))$

is invariant under the extension! (where $E_p(\Gamma) = \{e_1, \dots, e_m\}$)

Example
$$(c_{(\Gamma,\mathcal{A})}: E(\Gamma) \to \mathbb{Z}^n)$$

Let (Γ, \mathcal{A}) be the following (3, 2)-type GKM graph.

Then, the map $c_{(\Gamma,\mathcal{A})}: E(\Gamma) \to \mathbb{Z}^3$ is as follows:

イロト イポト イヨト イヨト

3

Main Theorem 2

IDEA and definition

By defining a sheaf of (Γ, \mathcal{A}) from $c_{(\Gamma, \mathcal{A})} : E(\Gamma) \to \mathbb{Z}^m$ and taking its (modified) global sections (in the sence of Braden-MacPherson), we define the following \mathbb{Z} -module from $c_{(\Gamma, \mathcal{A})} : E(\Gamma) \to \mathbb{Z}^m$:

$$\mathcal{O}(c_{(\Gamma,\mathcal{A})}) = \{f: V(\Gamma) \to \mathbb{Z}^m \mid \nabla_{pq}(f_p) - f_q = f_q(qp)c_{(\Gamma,\mathcal{A})}(qp)\}$$

where $f(p) = f_p \in \mathbb{Z}^m = \mathbb{Z}E_p(\Gamma)$ and $f_q(qp) \in \mathbb{Z}$ is an integer corresponding to the edge qp.

Main Theorem 2

IDEA and definition

By defining a sheaf of (Γ, \mathcal{A}) from $c_{(\Gamma, \mathcal{A})} : E(\Gamma) \to \mathbb{Z}^m$ and taking its (modified) global sections (in the sence of Braden-MacPherson), we define the following \mathbb{Z} -module from $c_{(\Gamma, \mathcal{A})} : E(\Gamma) \to \mathbb{Z}^m$:

$$\mathcal{O}(c_{(\Gamma,\mathcal{A})}) = \{f: V(\Gamma) \to \mathbb{Z}^m \mid \nabla_{pq}(f_p) - f_q = f_q(qp)c_{(\Gamma,\mathcal{A})}(qp)\}$$

where $f(p) = f_p \in \mathbb{Z}^m = \mathbb{Z}E_p(\Gamma)$ and $f_q(qp) \in \mathbb{Z}$ is an integer corresponding to the edge qp.

Theorem (Obstruction)

•
$$\mathcal{O}(c_{(\Gamma,\mathcal{A})})$$
 is a free \mathbb{Z} -module with $n \leq \operatorname{rk}\mathcal{O}(c_{(\Gamma,\mathcal{A})}) \leq m$;

② ∃ an (m, ℓ) -type extension $\iff \ell \leq \operatorname{rk}\mathcal{O}(c_{(\Gamma, A)}).$

Application of $\mathcal{O}(c_{(\Gamma,\mathcal{A})})$ to solve Prob2

Let (Γ, \mathcal{A}) be the following (3, 2)-type GKM graph induced from $(G_2/SU(3)(\simeq S^6), T^2)$.

Then, the map $c_{(\Gamma,\mathcal{A})}: E(\Gamma) \to \mathbb{Z}^3$ is as follows:

So, we have

$$\mathcal{O}(c_{(\Gamma,\mathcal{A})}) = \{f : \{p,q\} \to \mathbb{Z}^3 \mid \nabla_{e_i}(f_p) - f_q = f_q(\overline{e_i})c_{(\Gamma,\mathcal{A})}(\overline{e_i})\} \\ = \{(f_p,f_q) = ((x,y,z), (-x,-y,-z)) \mid x+y+z=0\} \simeq \mathbb{Z}^2.$$

Therefore, $\operatorname{rk}\mathcal{O}(c_{(\Gamma,\mathcal{A})}) = 2(<3)$.

 $\therefore \not\exists$ (3, 3)-extensions!

24 / 25

イロト 不得 トイヨト イヨト 二日

So, we have

$$\begin{array}{l} \mathcal{O}(c_{(\Gamma,\mathcal{A})}) = \{f : \{p,q\} \rightarrow \mathbb{Z}^3 \mid \nabla_{e_i}(f_p) - f_q = f_q(\overline{e_i})c_{(\Gamma,\mathcal{A})}(\overline{e_i})\} \\ = \{(f_p,f_q) = ((x,y,z), (-x,-y,-z)) \mid x+y+z=0\} \simeq \mathbb{Z}^2. \end{array}$$

Therefore, $\operatorname{rk}\mathcal{O}(c_{(\Gamma,\mathcal{A})}) = 2(<3)$.

 $\therefore \not\exists (3,3)$ -extensions!

Corollary

The GKM manifold (S^6, T^2) does not extend to a torus manifold (S^6, T^3) .

A B < A B <</p>

3

Thank you for your attention

Happy 60th Birthday, Professors Mikiya Masuda, Masaharu Morimoto and Kohei Yamaguchi!

4 E N 4 E N