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§1 Introduction

Definition (Hattori-Masuda)

Let M be a 2n-dim mfd with n-dim torus T-action. Then, M (or
(M, T)) is called a torus manifold if MT # 0.
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§1 Introduction

Definition (Hattori-Masuda)

Let M be a 2n-dim mfd with n-dim torus T-action. Then, M (or
(M, T)) is called a torus manifold if MT # 0.

Example (torus mfds)
e T"~ SCcC"dR = MT"={(0,1),(0,-1)}.
e T"~ CP"= (C" —{0})/C* (on last n coord) =
MT ={[1:0:---:0],...,[0:---:0:1]}.
o (Quasi)toric. (82", n>2,is NOT (quasi)toric)
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§1 Introduction

Definition (Hattori-Masuda)

Let M be a 2n-dim mfd with n-dim torus T-action. Then, M (or
(M, T)) is called a torus manifold if MT # 0.

Example (torus mfds)
e T"~ SCcC"dR = MT"={(0,1),(0,-1)}.
e T"~ CP"= (C" —{0})/C* (on last n coord) =
MT ={[1:0:---:0],...,[0:---:0:1]}.
e (Quasi)toric. (82", n > 2,is NOT (quasi)toric)

Definition (Guillemin-Holm-Zara)

M>2™ (or (M?™ T")) is called a GKM manifold if 1-skelton M;/T has
the structure of a graph, where M; = {x € M | dim T(x) < 1}.
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Example (GKM mfds)

@ A torus mfd (M, T) (if n = m) and some restricted T*-action
(k< m),eg., T>?~CP3by (t1,t:) — (t1, ta, t1£2) is the
restriction of T3 ~ CP3 by (t, ta, t3) — (t1, to, t3).

A\

Figure: Graph of the torus mfd (CP3, T3) and the GKM mfd (CP3, T?2).

@ A homogeneous sp (G/H, T), where T C H C G.

Figure: Graph of (SU(4)/S(U(2) x U(2)), T3).
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Motivational examples and Problems

Some T"-actions are induced from G-actions or T*-actions (n < /)

Example
e T"~ 5> C C"®d R~ R> is induced from
S0(2n+1) ~ S*".
e T"~ CP"= (C" — {0})/C* is induced from
PU(n+ 1) ~ CP", where PU(n+ 1) = SU(n + 1)/center.
o T2~ CP3 by (t1, ta) v (t1, tz, tit2) is induced from the natural
T3~ CP3 by (t1, to, t3) = (t1, b, t3).

v
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Motivational examples and Problems

Some T"-actions are induced from G-actions or T*-actions (n < /)
Example

e T"~ 5> C C"®d R~ R> is induced from
SO(2n+1) ~ §2,

e T"~ CP"= (C" — {0})/C* is induced from
PU(n+1) ~ CP", where PU(n+ 1) = SU(n + 1)/center.

@ T2~ CP? by (t1,t) = (t1, ta, t1t2) is induced from the natural
T3 ~ CP3 by (t1, ta, t3) > (t1, to, t3).

v

Problem

When does (M?™, T") extend to (M?™, G) (Probl) or (M?™, T*)
(Prob2)?

Here, (m >){ > n and G is a cpt Lie gr with T" C G (maximal).
Extensions of GKM mfds 14th Nov. 2014 (Aichi) 4 /25




Related works and main theorems

@ 1970 Demazure --- Aut(X) of toric X.

@ 2007 Kuroki - - - cohomogeneity one (and homogeneous) torus
mfds.
© 2010 Masuda - - - symplectic toric, quasitoric.
©Q 2012 Wiemeler - - - characterization of torus mfds with extended
actions.
Remark

Works 2, 4 characterized extended actions directly.
Works 1, 3 characterized them by root systems of combinatorial
objects (fan, polytope).

@ 2004 Shunji Takuma defines a combinatorial obstruction for the
extension from (M?™ T") to (M?™, T"1) (unpublished).
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GOAL J

Define invariants in GKM (and torus) graphs and solve problems.
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GOAL

Define invariants in GKM (and torus) graphs and solve problems.

Theorem 1 (K-Masuda, Wiemeler)
If T ~ M (torus mfds) extends to G ~ M and
G~ Gy XX Gyx T', then G; is locally isom to
e SU(nj+1) (type Ay,);
e SO(2n; +1) (type By,,);
e S0(2n;) (type D,,).

Theorem 2 (K, a generalization of Takuma's work)

If T" ~ M?™ (almost cpx GKM mfds) extends to T¢ ~ M?™ for
n < {, then the following holds:

o < tkO(c(ry.am)),
where O(c(r,,.A,)) is the free Z-module induced from (M, T").
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§2 Torus graph [MMP] and GKM graph [GZ]

Let I = (V(F), E(T')) be an m-valent graph, i.e., #E,(I') = m for all

S

Figure: Two 3-valent graphs and one 4-valent graph.
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§2 Torus graph [MMP] and GKM graph [GZ]

Let I = (V(F), E(T')) be an m-valent graph, i.e., #E,(I') = m for all

S

Figure: Two 3-valent graphs and one 4-valent graph.

Definition

A GKM graph (torus graph) is a labelled graph (I, A), where a label
A:E(T) — H*(BT") ~ Z" for 1 < n < m (n=m) satisfies the
following conditions:
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Torus graph and GKM graph

Axial function A (1)

A: E(T) — H*(BT") ~ Z" (called axial function) satisfies the
following 3 conditions:

(1) A(pq) = —A(gp) (A(pq) = £A(gp))

- =+
>Ot,__a< >a,_—_a<

(2) {A(e) | e € E,(T)} spans Z" and pairwise linearly indep.

o

where H*(BT?3) = (a, 3,7).
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Torus graph and GKM graph

Axial function A (II) and Examples
(3) Vpg € E(T'), 3 a bijection V,, : E,(I') — E4(I") which satisfies

Ve € E,(I'), Jcpq(e) € Z sit. A(Vpq(e)) — A(e) = cpq(e) A(pq).
(V={Ve|eec E(I)} is called a connection)
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Axial function A (II) and Examples

(3) Vpg € E(T'), 3 a bijection V,, : E,(I') — E4(I") which satisfies
Ve € Ep(I), Jepq(e) € Z s.t. A(Ve(e)) — Ale) = cpq(e) A(pa).
(V={V.|eecE(l} is called a connection)

Example
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Examples

The GKM (torus) graph (I'm, Am) of GKM (torus) mfd (M, T) can
be defined by
Q@ V(Iy)isMT;
@ E(Ty) is invariant $%'s;
© Ay : E(Tw) — H?(BT) is tangential representation on T,M
forallpe MT.

q
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GKM (torus) graph of T2~ CP? by [x:y : z] = [x : t1y : ta2].

r=[0:0:1]

Tangential rep.’s are
T,M =~ V(a)® V(B);

TyM ~ V(—a) @ V(5 — a);
TM=~V(-B)® V(-5+a).

B
[1:0:0]=p

Remark

m, Am) induced from a torus m " T") Is torus graph,
(M'n, Apn) induced fi fd (M2, T") graph
(Twm, Awm) induced from an (almost cpx) GKM mfd (M?™ T") is
GKM graph.
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§3 1st main results —Root systems of torus graphs—

Let (I',.A) be a GKM (torus) graph. Equivariant cohomology
H+(T, A) is defined by

{f: V()= H*(BT) | f(p) — f(g) =0 mod A(pq)}.
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§3 1st main results —Root systems of torus graphs—

Let (I',.A) be a GKM (torus) graph. Equivariant cohomology
H+(T, A) is defined by

{f: V()= H*(BT) | f(p) — f(g) =0 mod A(pq)}.

FACT 1

H%(T, A) has the H*(BT)-alg. structure by
7™ H*(BT) — H%(T', A) s.t. 7*(a) = « (constant map).
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§3 1st main results —Root systems of torus graphs—

Let (I',.A) be a GKM (torus) graph. Equivariant cohomology
H+(T, A) is defined by

{f: V()= H*(BT) | f(p) — f(g) =0 mod A(pq)}.

FACT 1

H%(T, A) has the H*(BT)-alg. structure by
7™ H*(BT) — H%(T', A) s.t. 7*(a) = « (constant map).

Theorem (Goresky-Kottwictz-MacPherson, Masuda-Panov)

If HO9(M) = 0, then H-(M) =~ Hx(Ta, Aw).
(Z-coeff for torus mfds, Q-coeff for GKM mfds)
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Let (I',.A) be a torus graph.

FACT 2 [Maeda-Masuda-Panov]
H%—(F.A) ~ @KCrZTK- J

Here, K runs through all (n — 1)-valent torus subgraphs.
Thom class 7x : V(I') = H?(BT) € H3(T', A) is defined by the
normal axial fcts of K.

-a+B
d 0
p q p 0
Figure: 7x(p) = o, 7x(q) =0, 7x(r) = o — B.
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Root system (review)

Definition (Root system)
Let R C R” be a set of vectors s.t.
@ R spans R”;
o a, ka € R (keR)= k==I;
° a, f€R = ry,B) €R (ra is the reflection along «);
o ry(B) =P — a0 = aga € Z.

Example
For TCG, Tng=teaer, V().
Then, R(G) = {+£a;} is the root system (of G).
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What happens in geometry?

Suppose T ~ M (torus mfd) extends to G ~ M.
Then,
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What happens in geometry?

Suppose T ~ M (torus mfd) extends to G ~ M.
Then,

o Ng(T)/T =W(G) ~{My,..., M,} (codim 2 torus submfds)
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What happens in geometry?

Suppose T ~ M (torus mfd) extends to G ~ M.
Then,

o Ng(T)/T =W(G) ~{My,..., M,} (codim 2 torus submfds)
e So, W(G) ~ HX(M) ~ H2(T 'y, Aym) >~ &7, Z1; preserves 7;'s
up to sign.
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What happens in geometry?

Suppose T ~ M (torus mfd) extends to G ~ M.
Then,

o Ng(T)/T =W(G) ~{My,..., M,} (codim 2 torus submfds)

e So, W(G) ~ HX(M) ~ H2(T 'y, Aym) >~ &7, Z1; preserves 7;'s
up to sign.

e Moreover, W(G) ~ H?*(M) trivial (so G is connected).
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Root systems of torus graphs

Lemma (FACT 3)

Let o € R(G) C t* ~ H?(BT) and r, € W(G) be its reflection
Then, r, : ®",Z1; — ®T,ZT; is one of the followings:
Q r.(1) = —7i, ra(74) = T for k # i

e I’a(T,') :’7'J', I’a(Tk) = Tk fOf k 7& i,j;
Q ro(m) = —7j, ra(mk) =7k for k #i,j.

Moreover, ¢*(«) is one of the followings (respectively):

Q t7;;
Q@ (1, —1);
Q@ (7, +75).

where ¢ : ET x+ M — BT.
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Root systems of torus graphs

Definition (Root systems of (I, .4))

We call the following set, say R(I",.A), a root system of a torus graph
(I, A): {a € H*(BT) | m*(a) = 71, +(7i — 73), or £ (71 +73)}.

Example
R(Tcpz, Acpz) = {£a, =8, £(a — B)}.

a-B -B
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Main theorem 1

Let ® be an irreducible subsystem of R(I', A) and A be its basis.

Theorem (K-Masuda)
® is of type A, B or D. More precisely,
Q@ disoftype B<—= Ja € ¢ s.t. 7*(a) =7,
Q@ o isof type D <= Aa €  s.t. m*(«) = 7;; moreover,
do, B € A s.it. (o) =17 — 75 and 7(B) = 7; + T);
Q@ O is of type A <= otherwise.

Remark

We also have R(G) C R(I'm, . Anm) if there is a torus manifold (M, T)
with an extended action (M, G).

v
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Obstruction of extension of GKM graphs

84 2nd main results
—Qbstruction of extension of GKM graphs-—

Let (I',.A) be an m-valent GKM graph.
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Obstruction of extension of GKM graphs

84 2nd main results
—Qbstruction of extension of GKM graphs-—

Let (I',.A) be an m-valent GKM graph.

Problem (Combinatorial interpretation of (M?™, T") = (M?™ T*))
When does A : E(T') — H?(BT") ((m, n)-type) extend to

A E(T) — H*(BTY) ((m,{)-type)?

Here, n < ¢ < m.
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Obstruction of extension of GKM graphs

84 2nd main results
—Qbstruction of extension of GKM graphs-—

Let (I',.A) be an m-valent GKM graph.

Problem (Combinatorial interpretation of (M?™, T") = (M?™ T*))
When does A : E(T') — H?(BT") ((m, n)-type) extend to

A E(T) — H*(BTY) ((m,{)-type)?

Here, n < ¢ < m.

Example
a+B/N\-B
a+B<€<—Y
&
-a-2B
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Key fact

Let (I',.A) be an (m, ¢)-type extension of (m, n)-type (I, A).
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Key fact

Let (I',.A) be an (m, ¢)-type extension of (m, n)-type (I, A).

FACT 4 [Takuma]
The integer c,,(e) of the condition (3) does NOT change! Namely,
Ve € E,(), dcpq(e) € Z s .

A(V,pq(€)) — A(e) = cpq(e)A(pq) for (I,.A),

A(V pg(€)) — A(e) = cpq(e)A(pq) for (T, A).
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Key fact

Let (I',.A) be an (m, ¢)-type extension of (m, n)-type (I, A).
FACT 4 [Takuma]

The integer c,,(e) of the condition (3) does NOT change! Namely,
Ve € E,(), dcpq(e) € Z s .

A(V,4(e)) — A(e) = cpq(e)A(pq) for (T, A),

A(V pg(€)) — A(e) = cpq(e)A(pq) for (T, A).

Thus, the map

cra E(N) = Z™ st. cra(pqg) = (cpqler), -, coglem))

is invariant under the extension! (where E,(I') = {e1,...,en})

v
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Example (¢ 4y : E() — Z")

Let (I, .A) be the following (3,2)-type GKM graph.

Then, the map ¢ 4) : E(T) — Z3 is as follows:

Al
( w—m
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Main Theorem 2

IDEA and definition

By defining a sheaf of (I, A) from ¢ 4y : E(I') — Z™ and taking its
(modified) global sections (in the sence of Braden-MacPherson), we
define the following Z-module from ¢(r 4y : E(T') — Z™:

O(er,a) = : V() = Z7 | Vpg(fo) — fo = folap)er.a(qp) }

where f(p) = f, € Z™ = ZE,(T') and f,(gp) € Z is an integer
corresponding to the edge gp.
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Main Theorem 2

IDEA and definition

By defining a sheaf of (I, A) from ¢ 4y : E(I') — Z™ and taking its
(modified) global sections (in the sence of Braden-MacPherson), we
define the following Z-module from ¢(r 4y : E(T') — Z™:

O(er,a) = : V() = Z7 | Vpg(fo) — fo = folap)er.a(qp) }

where f(p) = f, € Z™ = ZE,(T') and f,(gp) € Z is an integer
corresponding to the edge gp.

Theorem (Obstruction)
@ O(cr,a)) is a free Z-module with n < 1kO(¢r 4)) < m;

@ I an (m, ()-type extension L < rkO(c(r,a))-
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Application of O(c(r 4)) to solve Prob2

Let (I, .A) be the following (3, 2)-type GKM graph induced from
(G2/SUB)(= S°), T?).

Then, the map ¢ 4y : E(I') — Z3 is as follows:

Al )
( w—m
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Obstruction of extension of GKM graphs

So, we have

O(cr) ={f : {p,q} = Z° | Ve (o) — fq = fo(&)cr,a)(€)}
—{(pv Q)_((X7y7 )7(_X> Z))!X+y+z:0}:Z2.

Therefore, tkO(cr 1)) = 2(< 3).

*. A (3, 3)-extensions!

S. Kuroki (U of Tokyo) Extensions of GKM mfds 14th Nov. 2014 (Aichi) 24 / 25



Obstruction of extension of GKM graphs

So, we have

O(cr) ={f : {p,q} = Z° | Ve (o) — fq = fo(&)cr,a)(€)}
_{(Pan)_((Xuyv )?( X, = Z))!X+y+z:0}:Z2.

Therefore, tkO(cr 1)) = 2(< 3).
*. A (3, 3)-extensions!

Corollary

The GKM manifold (S®, T?) does not extend to a torus manifold
(%, T°).
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Thank you for your attention

Happy 60th Birthday,
Professors Mikiya Masuda,
Masaharu Morimoto and Kohei
Yamaguchi!
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