Marek Kaluba

Asymmetric manifolds

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Adam Mickiewicz University, Poznań, Poland

November 14, 2014

Product actions

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆

Marek Kaluba

Asymmetric manifolds

The action of G on a manifold $M \times N$ is called a **product** action if it is equivalent with one decomposable in the following manner.

The action of G on a manifold $M \times N$ is called a **product** action if it is equivalent with one decomposable in the following manner.

$$\begin{array}{c} G \times (M \times N) \longrightarrow M \times N \\ (g, (x, y)) \longmapsto \left[\begin{array}{c} \varphi(g) & 0 \\ 0 & \psi(g) \end{array} \right] \cdot \left[\begin{array}{c} x \\ y \end{array} \right] \end{array}$$

Where φ and ψ denote actions of *G* on maifolds *M*, *N* respectively.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Marek Kaluba

Asymmetric nanifolds

When there are plenty of actions on both M and N, we tend to believe that some of them might be interweaved to create a non-product one.

Marek Kaluba

Asymmetric manifolds

When there are plenty of actions on both M and N, we tend to believe that some of them might be interweaved to create a non-product one.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Choose *M* with as *few symmetries* as possible.

Marek Kaluba

Asymmetric nanifolds

The most natural choice for N is a sphere.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Marek Kaluba

Asymmetric nanifolds

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The most natural choice for N is a sphere. Consider an action of G on $M \times S^n$, where M is an "asymmetric" manifold. The most natural choice for N is a sphere. Consider an action of G on $M \times S^n$, where M is an "asymmetric" manifold.

What is the minimal n (depending on M and G) such that there exist a non-product action of G on $M \times S^n$?

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

Theorem

There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group with possible exception of orientation reversing involutions.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

V. Puppe, 1995 Simply connected 6-dimensional manifolds with little symmetry (...)

Theorem

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group with possible exception of orientation reversing involutions.
- Each of the manifolds above turns out to be a conjugation space (e.g. admits a special type of involution)

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

V. Puppe, 1995 Simply connected 6-dimensional manifolds with little symmetry (...)

M. Olbermann, 2010 Conjugations on 6-manifolds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Theorem

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group with possible exception of orientation reversing involutions.
- Each of the manifolds above turns out to be a conjugation space (e.g. admits a special type of involution)
- But if we are satisfied with just topological manifolds then there exists a similar family of non-smoothable ones which admit no involutions at all

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

V. Puppe, 1995 Simply connected 6-dimensional manifolds with little symmetry (...)

M. Olbermann, 2010 Conjugations on 6-manifolds

M. Kreck, 2009 Simply connected asymmetric manifolds

Theorem

- There exist an infinite family of simply connected, 6-dimensional smooth manifolds which do not admit any effective (even topological) action of any compact Lie group with possible exception of orientation reversing involutions.
- Each of the manifolds above turns out to be a conjugation space (e.g. admits a special type of involution)
- But if we are satisfied with just topological manifolds then there exists a similar family of non-smoothable ones which admit no involutions at all
- Existence of smooth simply connected manifolds with no involutions is still an open problem.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

V. Puppe, 1995 Simply connected 6-dimensional manifolds with little symmetry (...)

M. Olbermann, 2010 Conjugations on 6-manifolds

M. Kreck, 2009 Simply connected asymmetric manifolds

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

◆□ → < 個 → < 差 → < 差 → < 差 → < の < 0</p>

Remark

A *G*-action on $M \times N$ is a product action if and only if both projections $\pi_M \colon M \times N \to M$ and $\pi_N \colon M \times N \to N$ are *G*-equivariant maps.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Remark

A G-action on $M \times N$ is a product action if and only if both projections $\pi_M \colon M \times N \to M$ and $\pi_N \colon M \times N \to N$ are G-equivariant maps.

Corollary

Let $G = S^1$ or $\mathbb{Z}/_p$. Suppose that for every G-action on M, M^F is connected and that there is an action on $M \times S^n$ with an H-isotropy set

$$(M \times S^n)^H \supseteq X \sqcup Y,$$

for X not homotopy equivalent to Y.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Remark

A G-action on $M \times N$ is a product action if and only if both projections $\pi_M \colon M \times N \to M$ and $\pi_N \colon M \times N \to N$ are G-equivariant maps.

Corollary

Let $G = S^1$ or $\mathbb{Z}/_p$. Suppose that for every G-action on M, M^F is connected and that there is an action on $M \times S^n$ with an H-isotropy set

$$(M \times S^n)^H \supseteq X \sqcup Y,$$

for X not homotopy equivalent to Y. Then the G-action is not equivalent to a product action.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

In this talk the we will focus on cases:

• $M \times S^1$ and $M \times S^2$;

Marek Kaluba

Asymmetric nanifolds

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

In this talk the we will focus on cases:

•
$$M \times S^1$$
 and $M \times S^2$;

•
$$G = S^1$$
 or $G = \mathbb{Z}/_p$.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

Marek Kaluba

Asymmetric manifolds

Proposition

Let M be a *n*-dimensional asymmetric manifold. There exist effective, non-product actions of G on $M \times S^2$.

Proposition

Let X be a contractible, (n + 1)-dimensional $(n \ge 3)$ manifold with smooth boundary $\partial X = F$. Then there exist effective, smooth G-action on sphere S^{n+2} with the fixed-point set diffeomorphic to F. Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Proposition

Let X be a contractible, (n + 1)-dimensional $(n \ge 3)$ manifold with smooth boundary $\partial X = F$. Then there exist effective, smooth G-action on sphere S^{n+2} with the fixed-point set diffeomorphic to F.

Construction:

► Consider product G-action on X × D(V), where V is a non-trivial complex, 1-dimensional representation of G. Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

 $g \cdot (x, y) \mapsto (x, gy)$

Proposition

Let X be a contractible, (n + 1)-dimensional $(n \ge 3)$ manifold with smooth boundary $\partial X = F$. Then there exist effective, smooth G-action on sphere S^{n+2} with the fixed-point set diffeomorphic to F.

Construction:

► Consider product G-action on X × D(V), where V is a non-trivial complex, 1-dimensional representation of G.

• By *h*-cobordism theorem $X \times D(V) \cong D^{n+3}$.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

 $g \cdot (x, y) \mapsto (x, gy)$

Proposition

Let X be a contractible, (n + 1)-dimensional $(n \ge 3)$ manifold with smooth boundary $\partial X = F$. Then there exist effective, smooth G-action on sphere S^{n+2} with the fixed-point set diffeomorphic to F.

Construction:

- ► Consider product G-action on X × D(V), where V is a non-trivial complex, 1-dimensional representation of G.
- By *h*-cobordism theorem $X \times D(V) \cong D^{n+3}$.
- The action restricted to the boundary is the desired one.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQ@

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

 $g \cdot (x, y) \mapsto (x, gy)$

Proposition

Let X be a contractible, (n + 1)-dimensional $(n \ge 3)$ manifold with smooth boundary $\partial X = F$. Then there exist effective, smooth G-action on sphere S^{n+2} with the fixed-point set diffeomorphic to F.

Construction:

- ► Consider product G-action on X × D(V), where V is a non-trivial complex, 1-dimensional representation of G.
- By *h*-cobordism theorem $X \times D(V) \cong D^{n+3}$.
- The action restricted to the boundary is the desired one.

Marek Kaluba

Asymmetric manifolds

 $g \cdot (x, y) \mapsto (x, gy)$

Every codimension 2 fixed point set S^1 -action on a sphere comes from this construction, by result of W-Y. Hsiang

Proposition

Let *M* be a *n*-dimensional asymmetric manifold. Then there exist effective, non-product actions of *G* on $M \times S^2$.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Proposition

Let *M* be a *n*-dimensional asymmetric manifold. Then there exist effective, non-product actions of *G* on $M \times S^2$.

► Choose a *n*-dimensional (*n* ≥ 3) non-simply connected manifold *F* bounding a contractible manifold *X*.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

(e.g. F may be a smooth homology sphere)

Proposition

Let *M* be a *n*-dimensional asymmetric manifold. Then there exist effective, non-product actions of *G* on $M \times S^2$.

- ► Choose a *n*-dimensional (*n* ≥ 3) non-simply connected manifold *F* bounding a contractible manifold *X*.
- By the previous proposition there exists a smooth action of G on Sⁿ⁺² with the fixed point set diffeomorphic to F and tangential G-module at F isomorphic to V ⊕ n1_G.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

(e.g. F may be a smooth homology sphere)

 $n\mathbf{1}_G = \mathbb{R}^n$ with trivial action

Proposition

Let *M* be a *n*-dimensional asymmetric manifold. Then there exist effective, non-product actions of *G* on $M \times S^2$.

- ► Choose a *n*-dimensional (*n* ≥ 3) non-simply connected manifold *F* bounding a contractible manifold *X*.
- By the previous proposition there exists a smooth action of G on Sⁿ⁺² with the fixed point set diffeomorphic to F and tangential G-module at F isomorphic to V ⊕ n1_G.
- Form the connected sum

$$M \times S(V \oplus \mathbb{R}) \# S^{n+2} \cong M \times S^2.$$

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

(e.g. F may be a smooth homology sphere)

 $n\mathbf{1}_G = \mathbb{R}^n$ with trivial action

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - 釣�?

Marek Kaluba

Asymmetric manifolds

- Since all actions on S² are linear, a product action on M × S² would have the fixed point set either
 - empty (fixed-point-free action on S^2), or
 - diffeomorphic to $M \sqcup M$ (2-fixed-points action on S^2), or

• diffeomorphic to $M \times S^1$ (case $G = \mathbb{Z}/_2$)

Marek Kaluba

Asymmetric manifolds

- Since all actions on S^2 are linear, a product action on $M \times S^2$ would have the fixed point set either
 - empty (fixed-point-free action on S^2), or
 - diffeomorphic to $M \sqcup M$ (2-fixed-points action on S^2), or
 - diffeomorphic to $M \times S^1$ (case $G = \mathbb{Z}/_2$)
- Observe that the fixed point set of the action constructed on M × S² consists of two components

 $M \sqcup M \# F$

with non-isomorphic fundamental groups.

Actions on $M \times S^1$

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular M is simply connected, spin manifold with torsion-free cohomology concentrated in even dimensions. Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Actions on $M \times S^1$

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular M is simply connected, spin manifold with torsion-free cohomology concentrated in even dimensions.

Theorem

All free S^1 -actions on $M \times S^1$ are equivalent to a product action.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Actions on $M \times S^1$

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular M is simply connected, spin manifold with torsion-free cohomology concentrated in even dimensions.

Theorem

All free S^1 -actions on $M \times S^1$ are equivalent to a product action.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

 $\begin{array}{l} {\sf Product\ action} = \\ {\sf id} \times {\sf complex\ mult}. \end{array}$
Actions on $M \times S^1$

Let M^6 be one of the smooth asymmetric manifolds described by Puppe. In particular M is simply connected, spin manifold with torsion-free cohomology concentrated in even dimensions.

Theorem

All free S^1 -actions on $M \times S^1$ are equivalent to a product action.

We strongly believe that the following is also true:

Theorem? (Work in progress)

All free $\mathbb{Z}/_p$ -actions on $M \times S^1$ are equivalent to a product action $(p \neq 2)$.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

 $\begin{array}{l} {\sf Product\ action} = \\ {\sf id} \times {\sf\ complex\ mult}. \end{array}$

```
Product action = id \times exp\left(\frac{2\pi i}{p}\right)
```

Proof: (free S^1 -actions)

We use the fact that a free S^1 -action on $M \times S^1$ yields a fibre bundle over the orbit space $X \stackrel{\text{def.}}{=} M \times_G S^1$:

$$\xi \stackrel{\mathsf{def.}}{=} \left(S^1 \to M \times S^1 \to X \right).$$

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Proof: (free S^1 -actions)

We use the fact that a free S^1 -action on $M \times S^1$ yields a fibre bundle over the orbit space $X \stackrel{\text{def.}}{=} M \times_G S^1$:

$$\xi \stackrel{\mathsf{def.}}{=} \left(S^1 \to M \times S^1 \to X \right).$$

Every such bundle has a classifying map

$$X \xrightarrow{c(\xi)} BS^1$$

We want to use the map to compare fibre bundles.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

All such S^1 -bundles are determined by their first Chern class

$$c_1(\xi)=c(\xi)^*(x),$$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

All such S^1 -bundles are determined by their first Chern class

$$c_1(\xi)=c(\xi)^*(x),$$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$(S^1 \to X \times S^1 \to X)$$
.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

All such S^1 -bundles are determined by their first Chern class

$$c_1(\xi)=c(\xi)^*(x),$$

where x is the generator of $H^2(BS^1, \mathbb{Z})$.

Our aim is to prove that $c_1(\xi)$ vanishes, so that we have a trivial bundle

$$(S^1 \to X \times S^1 \to X)$$
.

Assume so for now.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Proof: (continued)

Then we have a commuting diagram:

Group Actions or a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

Proof: (continued)

Then we have a commuting diagram:

So we know that over (a manifold) X the trivial S^1 -bundle satisfies

$$M \times S^1 \cong X \times S^1.$$

Froup Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Observe that this gives us just a homotopy equivalence

$$M \xrightarrow{\simeq} X.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Observe that this gives us just a homotopy equivalence

$M \xrightarrow{\simeq} X.$

Exercise (in *h*-cobordism)

Improve this to a diffeomorphism.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

・ロト・日本・山田・ 山田・ 日・ シック

Solution:

We already have a diffeomorphism $M \times S^1 \to X \times S^1.$ Lift it to the \mathbb{Z} -cover

$$\varphi \colon M \times \mathbb{R} \to X \times \mathbb{R}.$$

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Solution:

We already have a diffeomorphism $M \times S^1 \to X \times S^1$. Lift it to the \mathbb{Z} -cover

$$\varphi \colon M \times \mathbb{R} \to X \times \mathbb{R}.$$

The image $\varphi(M \times \{0\})$ belongs to $X \times (0, 2)$ and separates $X \times \mathbb{R}$ into two components. Choose one of them and intersect it with $(X \times (\pm \infty, a])$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQ@

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Solution:

We already have a diffeomorphism $M \times S^1 \to X \times S^1$. Lift it to the \mathbb{Z} -cover

$$\varphi \colon M \times \mathbb{R} \to X \times \mathbb{R}.$$

The image $\varphi(M \times \{0\})$ belongs to $X \times (0, 2)$ and separates $X \times \mathbb{R}$ into two components. Choose one of them and intersect it with $(X \times (\pm \infty, a])$.

This is a non-empty, connected manifold with boundary

$$\partial W \cong N \sqcup \varphi(M).$$

Moreover the inclusions $N \hookrightarrow W$ and $\varphi(M) \hookrightarrow W$ are homotopy equivalences. Since $\pi_1(M) = 0$ we obtain a diffeomorphism $M \to X$ by the *h*-cobordism theorem. Group Actions on a Class of 7-manifolds.

Marek Kaluba

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

So M and X are diffeomorphic, and the diffeomorphism gives us desired equivalence of actions.

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ○

So M and X are diffeomorphic, and the diffeomorphism gives us desired equivalence of actions.

Omitted in the proof:

Triviality of the first Chern class.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

So M and X are diffeomorphic, and the diffeomorphism gives us desired equivalence of actions.

Omitted in the proof:

Triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by $c_1(\xi)$ can be identified with a differential on the second page of the Leray-Serre spectral sequence.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

So M and X are diffeomorphic, and the diffeomorphism gives us desired equivalence of actions.

Omitted in the proof:

Triviality of the first Chern class.

Proof of this fact relays on:

Fact: Multiplication by $c_1(\xi)$ can be identified with a differential on the second page of the Leray-Serre spectral sequence.

Group Actions or a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Then we use cohomological properties of M to prove that $c_1(\xi) = 0.$

Recall that M is 6-dimensional, simply connected manifold with cohomology

$$H^*(M) = \operatorname{Free}(H^*(M)) = H^{\operatorname{even}}(M)$$

generated in dimension 2.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Recall that M is 6-dimensional, simply connected manifold with cohomology

$$H^*(M) = \operatorname{Free}(H^*(M)) = H^{\operatorname{even}}(M)$$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Recall that M is 6-dimensional, simply connected manifold with cohomology

$$H^*(M) = \operatorname{Free}(H^*(M)) = H^{\operatorname{even}}(M)$$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

Assume that $\pi_1(X)$ acts trivially on $H^*(S^1)$.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

For simplicity. We can actually do better.

Recall that M is 6-dimensional, simply connected manifold with cohomology

$$H^*(M) = \operatorname{Free}(H^*(M)) = H^{\operatorname{even}}(M)$$

generated in dimension 2.

By the long exact sequence of fibration, $\pi_1(X)$ is either trivial or finite cyclic.

Assume that $\pi_1(X)$ acts trivially on $H^*(S^1)$. Then we have the following spectral sequence

$$E_2^{p,q} = H^p(X, H^q(S^1, \mathbb{Z})) \Rightarrow H^{p+q}(M \times S^1, \mathbb{Z}).$$

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

For simplicity. We can actually do better.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

•
$$d_2: E_2^{0,1} \rightarrow E_2^{2,0}$$
 is multiplication by $c_1(\xi)$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- ▶ Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator. $c \in \text{Tor}(H^2(X)) = H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.

$$c \in \operatorname{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.

$$c \in \operatorname{Tor}(H^2(X)) =$$

 $H_1(X) = \mathbb{Z}/_k$

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_k$

- Since $d_2(c \otimes a) = c^2$, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.
- $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- $c \in \operatorname{Tor}(H^2(X)) =$ $H_1(X) = \mathbb{Z}/_k$

by multiplicative properties

- Since d₂(c ⊗ a) = c², push c → c³ ⊗ a ∈ E₂^{b,1}.
 c³ ⊗ a survives to E_∞ and hence to H⁷(M × S¹).
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.

- $d_2: E_2^{0,1} \rightarrow E_2^{2,0}$ is multiplication by $c_1(\xi)$
- Set $d_2(a) = c \neq 0$. We claim that $c \in \mathbb{Z}/_k$ is a generator.
- Since $d_2(c \otimes a) = c^2$, push $c \rightsquigarrow c^3 \otimes a \in E_2^{6,1}$.
- $c^3 \otimes a$ survives to E_{∞} and hence to $H^7(M \times S^1)$.
- But $H^7(M \times S^1) = \mathbb{Z}$, so $d_2(c^2 \otimes a) = c^3 = 0$.
- ▶ Now $c^2 \otimes a$ survives to E_∞ , so we have an extension

 $c \in \operatorname{Tor}(H^2(X)) = H_1(X) = \mathbb{Z}/_k$

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

This proves simultaneously that

- $c_1(\xi)$ is trivial
- torsion $(H^2(X)) = H_1(X) = \pi_1(X)$ is trivial.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

This proves simultaneously that

• $c_1(\xi)$ is trivial

• torsion
$$(H^2(X)) = H_1(X) = \pi_1(X)$$
 is trivial.

The proof above suggests, that the fact is more general, i.e. it holds for all manifolds M with torsion-free cohomology in even degrees.

Further perspective

	$\mathbb{Z}/_p$ groups	circle	
non-free actions			
free actions			

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - クへぐ

Is every $\langle * \rangle$ action of G on $M \times S^2$ product?

	$\mathbb{Z}/_p$ groups	circle
non-free actions		
free actions		

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣ぬぐ

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

	$\mathbb{Z}/_p$ groups	circle
non-free actions		
free actions		

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

	$\mathbb{Z}/_p$ groups	circle
non-free actions		
free actions		

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

・ロト・日本・山田・山田・山田・

	$\mathbb{Z}/_p$ groups	circle
non-free actions		
free actions		

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

・ロト・日本・山田・山田・山田・

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

We may approach this problem using (classical) surgery methods.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

We may approach this problem using (classical) surgery methods.

However now the orbit space $X \stackrel{\text{def.}}{=} M \times_{\mathbb{Z}/p} S^1$ is a non-simply connected 7-manifold.

Remark

We believe that for free $G = \mathbb{Z}/_p$ -actions the homotopy type of the orbit space is the invariant.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

in the case $\mathbb{Z}/_2$ we do have a proof

We may approach this problem using (classical) surgery methods.

However now the orbit space $X \stackrel{\text{def.}}{=} M \times_{\mathbb{Z}/p} S^1$ is a non-simply connected 7-manifold.

Remark

We believe that for free $G = \mathbb{Z}/_p$ -actions the homotopy type of the orbit space is the invariant.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

This is work in progress with Z. Błaszczyk

roup Actions or a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

in the case $\mathbb{Z}/_2$ we do have a proof

We may approach this problem using (classical) surgery methods.

However now the orbit space $X \stackrel{\text{def.}}{=} M \times_{\mathbb{Z}/p} S^1$ is a non-simply connected 7-manifold.

Remark

We believe that for free $G = \mathbb{Z}/_p$ -actions the homotopy type of the orbit space is the invariant.

This is work in progress with Z. Błaszczyk

A similar results on free $\mathbb{Z}/_p$ -actions on $S^n \times S^1$ was recently obtained by Q.Khan (for p an odd prime) and B.Jahren&S.Kwasik (for p an even prime).

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

in the case $\mathbb{Z}/_2$ we do have a proof

Conjectures and problems

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric nanifolds

◆□ → ◆□ → ▲目 → ▲目 → ● ◆ ● ◆

Let G be an arbitrary finite group and let N be the smallest dimension of faithful representation of G.

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Let G be an arbitrary finite group and let N be the smallest dimension of faithful representation of G.

Question

Is it true that for n < N all effective actions of G on $M \times S^n$ are product actions?

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Let G be an arbitrary finite group and let N be the smallest dimension of faithful representation of G.

Question

Is it true that for n < N all effective actions of G on $M \times S^n$ are product actions?

Problem (for a decent-lunch-price)

What are algebraic or geometric (computable!) invariants that will allow us to recognize a product action?

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

Group Actions on a Class of 7-manifolds.

Marek Kaluba

Asymmetric manifolds

ありがとう ▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣べ⊙