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The action of G on a manifold M x N is called a product
action if it is equivalent with one decomposable in the
following manner.

Gx(MxN)— MxN

(g, (x,¥)) — [ (p(og) w?g) } ' [ ; ]

Where ¢ and 1) denote actions of G on maifolds M, N
respectively.
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When there are plenty of actions on both M and N, we tend

to believe that some of them might be interweaved to create
a non-product one.

Choose M with as few symmetries as possible.
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Stabilisation

The most natural choice for N is a sphere.
Consider an action of G on M x S", where M is an
“asymmetric” manifold.

What is the minimal n (depending on M and G)

such that there exist a non-product action of G on
M x S"7?
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Theorem

» There exist an infinite family of simply connected,
6-dimensional smooth manifolds which do not admit any
effective (even topological) action of any compact Lie
group with possible exception of orientation reversing

involutions.
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Asymmetric manifolds
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Theorem

» There exist an infinite family of simply connected,

6-dimensional smooth manifolds which do not admit any
effective (even topological) action of any compact Lie
group with possible exception of orientation reversing
involutions.

Each of the manifolds above turns out to be a
conjugation space (e.g. admits a special type of
involution)

But if we are satisfied with just topological manifolds
then there exists a similar family of non-smoothable
ones which admit no involutions at all

Existence of smooth simply connected manifolds with no
involutions is still an open problem.

V. Puppe, 1995
Simply connected
6-dimensional
manifolds with little
symmetry (...)

M. Olbermann,
2010
Conjugations on
6-manifolds

M. Kreck, 2009
Simply connected
asymmetric
manifolds
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Detection methods

Marek Kaluba

Remark

A G-action on M x N is a product action if and only if both
projections wpg: M x N — M and mpy: M x N — N are
G-equivariant maps.

Corollary

Let G = S or ZJ,. Suppose that for every G-action on M,
MF is connected and that there is an action on M x S™ with
an H-isotropy set

(MxsmFoxuy,

for X not homotopy equivalent to Y. Then the G-action is
not equivalent to a product action.
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In this talk the we will focus on cases:
» M x St and M x S2;
» G=Stor G=17).
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Proposition

Let M be a n-dimensional asymmetric manifold. There exist
effective, non-product actions of G on M x S2.
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with smooth boundary 0X = F. Then there exist effective,
smooth G-action on sphere $™t2 with the fixed-point set
diffeomorphic to F.
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Codimension 2 fixed point sets of G-actions

Proposition

Let X be a contractible, (n+ 1)-dimensional (n > 3) manifold
with smooth boundary 0X = F. Then there exist effective,
smooth G-action on sphere $™t2 with the fixed-point set
diffeomorphic to F.

Construction:

» Consider product G-action on X x D(V), where V is a
non-trivial complex, 1-dimensional representation of G.

» By h-cobordism theorem X x D(V) = D"*3,

» The action restricted to the boundary is the desired one.

O
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g (x,y) = (x, 8y)

Every codimension
2 fixed point set
S*-action on a
sphere comes from
this construction, by
result of W-Y.
Hsiang
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Proposition
Let M be a n-dimensional asymmetric manifold. Then there
exist effective, non-product actions of G on M x 52,
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Non-product actions

Proposition
Let M be a n-dimensional asymmetric manifold. Then there
exist effective, non-product actions of G on M x 52,

» Choose a n-dimensional (n > 3) non-simply connected
manifold F bounding a contractible manifold X.

» By the previous proposition there exists a smooth action
of G on §"*2 with the fixed point set diffeomorphic to F
and tangential G-module at F isomorphic to V & nlg.

» Form the connected sum

M x S(V@R)#S"2 = M x §2,

Marek Kaluba

(e.g. F may be a
smooth homology
sphere)

nlg = R" with
trivial action
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» Since all actions on S? are linear, a product action on
M x S? would have the fixed point set either
» empty (fixed-point-free action on S?), or
» diffeomorphic to M LI M (2-fixed-points action on $2), or
» diffeomorphic to M x S! (case G = Z),)



Marek Kaluba

» Since all actions on S? are linear, a product action on
M x S? would have the fixed point set either
» empty (fixed-point-free action on S?), or
» diffeomorphic to M LI M (2-fixed-points action on $2), or
» diffeomorphic to M x S! (case G = Z),)

» Observe that the fixed point set of the action
constructed on M x S? consists of two components

M U M4F

with non-isomorphic fundamental groups.
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Actions on M x S?

Marek Kaluba

Let M® be one of the smooth asymmetric manifolds described
by Puppe. In particular M is simply connected, spin manifold
with torsion-free cohomology concentrated in even

dimensions.

Theorem

All free St-actions on M x S are equivalent to a product Product action —
aCtion id X complex mult.

We strongly believe that the following is also true:

Theorem? (Work in progress)

All free Z/,-actions on M x S are equivalent to a product e e
action (p # 2). e (221
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Proof: (free S-actions)

Marek Kaluba

We use the fact that a free S-action on M x S? yields a fibre
bundle over the orbit space X e p x¢g St

fdéf'(51—>M><51—>X).

Every such bundle has a classifying map

0(5) <), ge1

We want to use the map to compare fibre bundles.
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c1(§) = ¢(€)" (),

where x is the generator of H 2(BS!, 7).
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Proof: (continued)

Marek Kaluba

All such S!-bundles are determined by their first Chern class

c1(§) = ¢(€)" (),
where x is the generator of H 2(BS!, 7).

Our aim is to prove that c;(&) vanishes, so that we have a
trivial bundle
(S = X x St = X).

Assume so for now.
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Proof: (continued)

Marek Kaluba

Then we have a commuting diagram:

TG

M x St

M x St

So we know that over (a manifold) X the trivial S'-bundle
satisfies
M x St = X x SL.
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Observe that this gives us just a homotopy equivalence

M= X,



Proof: (continued)
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Observe that this gives us just a homotopy equivalence

M= X,

Exercise (in h-cobordism)
Improve this to a diffeomorphism.
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Solution:

Marek Kaluba

We already have a diffeomorphism M x S — X x S1. Lift it
to the Z-cover
p: MxR—XxR.

The image (M x {0}) belongs to X x (0,2) and separates
X x R into two components. Choose one of them and
intersect it with (X x (%00, a)).

This is a non-empty, connected manifold with boundary

oW = N L p(M).

Moreover the inclusions N < W and p(M) — W are
homotopy equivalences. Since w1(M) = 0 we obtain a
diffeomorphism M — X by the h-cobordism theorem.
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So M and X are diffeomorphic, and the diffeomorphism gives
us desired equivalence of actions.

Omitted in the proof:
» Triviality of the first Chern class.
Proof of this fact relays on:

Fact: Multiplication by c;(£) can be identified with a
differential on the second page of the Leray-Serre
spectral sequence.
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Proof: (end of)

So M and X are diffeomorphic, and the diffeomorphism gives
us desired equivalence of actions.

Omitted in the proof:
» Triviality of the first Chern class.
Proof of this fact relays on:

Fact: Multiplication by c;(£) can be identified with a
differential on the second page of the Leray-Serre
spectral sequence.

Marek Kaluba

Then we use
cohomological
properties of M to
prove that

a(é) =o.
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generated in dimension 2.
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Triviality of the first Chern class

Marek Kaluba

Recall that M is 6-dimensional, simply connected manifold
with cohomology

H*(M) = Free (H*(M)) = H®*"(M)

generated in dimension 2.

By the long exact sequence of fibration, 71(X) is either trivial
or finite cyclic.

Assume that 71(X) acts trivially on H*(S!). Then we have For simplicy
. e can actually do
the following spectral sequence beter.

EP9 = HP(X,HI(S,Z2)) = HPTI(M x St,7).
2
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> dy: E20,1 — E22’0 is multiplication by c1(€)

> Set db(a) = ¢ # 0. We claim that ¢ € Z/j is a generator.

» Since db(c ® a) = 2, push ¢ ~ ASwac ESL,
2

¢ € Tor(H(X)) =
Hi(X) = Z/k

by multiplicative

properties
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> dy: E20,1 — E22’0 is multiplication by c1(€)

> Set db(a) = ¢ # 0. We claim that ¢ € Z/j is a generator. CHG(;)O'(HZZ/(X)) =
1 = L/k

by multiplicative

» Since da(c®a) =c? pushc~ 3 ®ac E26’1. propertics
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by multiplicative
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dr: E20,1 — E22’0 is multiplication by c1(€)

Set dh(a) = ¢ # 0. We claim that ¢ € Z/, is a generator.

¢ € Tor(H(X)) =
Hi(X) = Z/k

by multiplicative

Since d2(C ® a) == C2y pUSh C ~ C3 ® ac E26,1- properties
c3 ® a survives to E,, and hence to H'(M x S1).
But H'(M x SY) =7, so da(c? @ a) = ¢ = 0.
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> dy: E20,1 — E22’0 is multiplication by c1(€)

v

vV v vy

Set dh(a) = ¢ # 0. We claim that ¢ € Z/, is a generator.

¢ € Tor(H(X)) =
Hi(X) = Z/k

by multiplicative

Since da(c ® a) = 2, push c ~ 3 ®a € E26’1. oropertis
c3 ® a survives to E,, and hence to H'(M x S1).
But H'(M x SY) =7, so da(c? @ a) = ¢ = 0.
Now ¢ ® a survives to E.., so we have an extension
0= Ef' < HY (M x S'Y) —m 0.
~~ —_—
q 3c2®a torsion-free
H>(M x S1)
[ [} [ [ ) [
(@, o (c@a.. ) Cp e
Lo Tes Tea
(Dz e (¢..z (o e
p
0 1 2 3 4 5 6 7
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This proves simultaneously that
> (&) is trivial
» torsion(H?(X)) = Hi(X) = m1(X) is trivial.



This proves simultaneously that
> (&) is trivial
» torsion(H?(X)) = Hi(X) = m1(X) is trivial.

The proof above suggests, that the fact is more general, i.e.

it holds for all manifolds M with torsion-free cohomology in
even degrees.
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Free actions of Z/,

Marek Kaluba

We may approach this problem using (classical) surgery
methods.

: def. . .
However now the orbit space X = M Xz, St is a non-simply
connected 7-manifold.

Remark
We believe that for free G = Z/,-actions the homotopy type i, e case 2 we
of the orbit space is the invariant. do have a proof

This is work in progress with Z. Btaszczyk

A similar results on free Z/,-actions on S" x S! was recently
obtained by Q.Khan (for p an odd prime) and
B.Jahren&S.Kwasik (for p an even prime).
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Semi-conjectures and questions

Marek Kaluba

Let G be an arbitrary finite group and let N be the smallest
dimension of faithful representation of G.

Question
Is it true that for n < N all effective actions of G on M x S"
are product actions?

Problem (for a decent-lunch-price)

What are algebraic or geometric (computable!) invariants
that will allow us to recognize a product action?
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