◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Equivariant unitary bordism and equivariant cohomology Chern numbers

(Joint work with Wei Wang)

Zhi Lü

School of Mathematical Sciences Fudan University, Shanghai

November 13–15, 2014 The 41st symposium on transformation groups Gamagori Civic Hall, Japan

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

To Professors Masuda, Morimoto, Yamaguchi

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

To Professors Masuda, Morimoto, Yamaguchi Happy 60 birthday!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

To Professors Masuda, Morimoto, Yamaguchi Happy 60 birthday! Happy family life!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

To Professors Masuda,Morimoto,Yamaguchi Happy 60 birthday! Happy family life! Happy mathematical life!

$\S1$ Notations and background	§2 Question	§3 Main Results	§4 Proofs
Outline			

Notations and background

§3 Main Result

Notations and background

Question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Notations and background

- Question
- Main results

- Notations and background
- Question
- Main results
- Proofs

§3 Main Results

Unitary manifolds

Definition

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Unitary manifolds

Definition

A **unitary manifold** *M* is a compact, oriented, smooth manifold whose tangent bundle admits a stably almost complex structure (i.e.,

$$J: TM \oplus \mathbb{R}^{l} \longrightarrow TM \oplus \mathbb{R}^{k}$$

such that $J^2 = -id$).

(日) (日) (日) (日) (日) (日) (日)

Unitary manifolds

Definition

A **unitary manifold** *M* is a compact, oriented, smooth manifold whose tangent bundle admits a stably almost complex structure (i.e.,

$$J: \mathit{TM} \oplus \underline{\mathbb{R}}^{\prime} \longrightarrow \mathit{TM} \oplus \underline{\mathbb{R}}^{\prime}$$

such that $J^2 = -id$).

Example: Quasi-toric manifolds are closed unitary manifolds.

Milnor and Novikov: classifying all closed manifolds up to unitary bordism.

$$\Omega^U_* = \{ all \ closed \ unitary \ manifolds \} / \sim$$

where \sim : unitary bordism, which is defined by

$$M_1^n \sim M_2^n \iff \exists W \text{ s. t. } \partial W = M_1^n \sqcup - M_2^n$$
 with same unitary structure

 Ω^U_* forms a ring with the following addition and multiplication

$$[M_1] + [M_2] = [M_1 \sqcup M_2]$$

$$[M] \cdot [N] = [M \times N]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Milnor, Novikov)

•
$$[M] = 0$$
 in $\Omega^U_* \iff$ all Chern numbers of M vanish.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Milnor, Novikov)

- [M] = 0 in $\Omega^U_* \iff$ all Chern numbers of M vanish.
- Ω^U_{*} = ℤ[x_{2i}|i ≥ 1], where x_{2i} can be represented by Milnor hypersurfaces.

Equivariant case

G: compact Lie group

Definition

A unitary *G*-manifold is a unitary manifold with a *G*-action preserving the unitary structure (i.e., there exists the following commutative diagram

where $J^2 = -id$ and $g \in G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\Omega^{U,G}_* = \{ \text{all closed unitary } G\text{-manifolds} \} / \sim_G$ where \sim_G : equivariant unitary bordism, defined by $M_1 \sim_G M_2 \iff \exists W \text{ s. t. } \partial W = M_1 \sqcup -M_2 \text{ with same } G\text{-unitary stru.}$

 $\Omega_*^{U,G} = \{ \text{all closed unitary } G\text{-manifolds} \} / \sim_G$ where \sim_G : equivariant unitary bordism, defined by $M_1 \sim_G M_2 \iff \exists W \text{ s. t. } \partial W = M_1 \sqcup -M_2 \text{ with same } G\text{-unitary stru.}$ $\Omega_*^{U,G}$ also forms a ring.

 $\Omega^{U,G}_* = \{ all \ closed \ unitary \ G-manifolds \} / \sim_G$

where \sim_G : equivariant unitary bordism, defined by

 $M_1 \sim_G M_2 \iff \exists W \text{ s. t. } \partial W = M_1 \sqcup -M_2 \text{ with same } G\text{-unitary stru.}$

$\Omega^{U,G}_*$ also forms a ring.

 $\Omega^{U,G}_* = \{ all closed unitary G-manifolds \} / \sim_G \}$

where \sim_G : equivariant unitary bordism, defined by

 $M_1 \sim_G M_2 \iff \exists W \text{ s. t. } \partial W = M_1 \sqcup -M_2 \text{ with same } G\text{-unitary stru.}$

$\Omega^{U,G}_*$ also forms a ring.

Remark

Complicated!!! The ring structure of $\Omega^{U,G}_*$ is still open for arbitrary *G*

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Natural question

What is the complete invariant of \sim_G ?

Natural question

What is the complete invariant of \sim_G ?

Theorem (tom Dieck, 1971)

Let $G = T^k \times \mathbb{Z}_m$. Then $[M]_G = 0$ in $\Omega^{U,G}_* \iff$ all equivariant K-theoretic Chern numbers of M vanish.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ りゃう

Natural question

What is the complete invariant of \sim_G ?

Theorem (tom Dieck, 1971)

Let $G = T^k \times \mathbb{Z}_m$. Then $[M]_G = 0$ in $\Omega^{U,G}_* \iff$ all equivariant K-theoretic Chern numbers of M vanish.

Theorem (Guillemin–Ginzburg–Karshon, 2002)

Let $G = T^k$. Then a closed unitary T^k -manifold M with only isolated fixed points represents the zero element in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of M vanish.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Without the restriction of isolated fixed-points, Guillemin–Ginzburg–Karshon posed

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Remark

In their book, Guillemin–Ginzburg–Karshon discussed the problem of calculating the ring $\mathcal{H}_*^{\mathcal{T}^k}$ of equivariant Hamiltonian bordism classes of all unitary Hamiltonian \mathcal{T}^k -manifolds.

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Remark

In their book, Guillemin–Ginzburg–Karshon discussed the problem of calculating the ring $\mathcal{H}_*^{T^k}$ of equivariant Hamiltonian bordism classes of all unitary Hamiltonian T^k -manifolds. They designed three series of questions, the first one of which is stated as follows:

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Remark

In their book, Guillemin–Ginzburg–Karshon discussed the problem of calculating the ring $\mathcal{H}_*^{T^k}$ of equivariant Hamiltonian bordism classes of all unitary Hamiltonian T^k -manifolds. They designed three series of questions, the first one of which is stated as follows: *Do mixed equivariant characteristic numbers form a full system of invariants of Hamiltonian bordism?*

Conjecture (Guillemin–Ginzburg–Karshon, 2002)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Remark

In their book, Guillemin–Ginzburg–Karshon discussed the problem of calculating the ring $\mathcal{H}_*^{T^k}$ of equivariant Hamiltonian bordism classes of all unitary Hamiltonian T^k -manifolds. They designed three series of questions, the first one of which is stated as follows:

Do mixed equivariant characteristic numbers form a full system of invariants of Hamiltonian bordism?

Then Guillemin - Ginzburg - Karshon constructed a monomorphism

$$\mathcal{H}^{T^k}_* \longrightarrow \Omega^{U,T^k}_{*+2}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Main results

Theorem A (Lü-Wang)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

(日) (日) (日) (日) (日) (日) (日)

Main results

Theorem A (Lü-Wang)

 $[M]_{T^k} = 0$ in $\Omega^{U,T^k}_* \iff$ all equivariant cohomology Chern numbers of *M* vanish.

Corollary

Mixed equivariant characteristic numbers form a full system of invariants of Hamiltonian bordism.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main results

Using the equivariant Riemann–Roch relation of Atiyah–Hizebruch type, we also obtain

Theorem B (Lü–Wang)

Let $[M]_{T^k} \in \Omega^{U,T^k}_*$. Then All equivariant cohomology Chern numbers of M vanish \iff all equivariant K-theoretic Chern numbers of M vanish.

Main results

Using the equivariant Riemann–Roch relation of Atiyah–Hizebruch type, we also obtain

Theorem B (Lü–Wang)

Let $[M]_{T^k} \in \Omega^{U,T^k}_*$. Then All equivariant cohomology Chern numbers of M vanish \iff all equivariant K-theoretic Chern numbers of M vanish.

Remark

With a different way, we actually obtain the tom Dieck's Theorem in the case where G is a torus.

§3 Main Results

Proof of Theorem A

Key points

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Proof of Theorem A

Key points

- Kronecker pairing between bordism and cobordism
- Universal toric genus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Kronecker pairing between bordism and cobordism

Notions-homotopic bordism and cobordism

۲

$$MU_*(X) = \lim_{r \longrightarrow \infty} [S^{2r+*}, X_+ \wedge MU(r)]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Kronecker pairing between bordism and cobordism

Notions-homotopic bordism and cobordism

 $MU_*(X) = \lim_{r \longrightarrow \infty} [S^{2r+*}, X_+ \wedge MU(r)]$

۲

٢

$$MU^*(X) = \lim_{r \to \infty} [S^{2r+*} \wedge X_+, MU(r)]$$

where $X_+ = X \cup \{pt\}$, MU(r): Thom space of universal complex *r*-dim. vector bundle over BU(r).
Notions-homotopic bordism and cobordism

$$MU_*(X) = \lim_{r \longrightarrow \infty} [S^{2r+*}, X_+ \wedge MU(r)]$$

٩

٢

$$MU^*(X) = \lim_{r \to \infty} [S^{2r+*} \wedge X_+, MU(r)]$$

where $X_+ = X \cup \{pt\}$, MU(r): Thom space of universal complex *r*-dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, $MU_*(X) \cong \Omega^U_*(X)$,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Notions-homotopic bordism and cobordism

$$MU_*(X) = \lim_{r \longrightarrow \infty} [S^{2r+*}, X_+ \wedge MU(r)]$$

۲

$$MU^*(X) = \lim_{r \to \infty} [S^{2r+*} \wedge X_+, MU(r)]$$

where $X_+ = X \cup \{pt\}$, MU(r): Thom space of universal complex *r*-dim. vector bundle over BU(r).

Remark. By Thom-Pontryagin construction, $MU_*(X) \cong \Omega^U_*(X)$, where $\Omega^U_*(X)$ is formed by the bordism classes of singular manifolds $f : M \longrightarrow X$ for M: unitary manifold

Quillen's geometric interpretation of elements in $MU^*(X)$

Each element $\alpha \in MU^{\pm n}$ can be represented by an oriented complex map $f: M \longrightarrow X$,

Quillen's geometric interpretation of elements in $MU^*(X)$

Each element $\alpha \in MU^{\pm n}$ can be represented by an oriented complex map $f : M \longrightarrow X$, where X is a smooth manifold and dim $X - \dim M = \pm n$.

Quillen's geometric interpretation of elements in $MU^*(X)$

Each element $\alpha \in MU^{\pm n}$ can be represented by an oriented complex map $f : M \longrightarrow X$, where X is a smooth manifold and dim $X - \dim M = \pm n$.

If *n* is even, *f* is a composition of

$$M \hookrightarrow E \longrightarrow X$$

such that the normal bundle of M in E admits a complex structure,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Quillen's geometric interpretation of elements in $MU^*(X)$

Each element $\alpha \in MU^{\pm n}$ can be represented by an oriented complex map $f : M \longrightarrow X$, where X is a smooth manifold and dim $X - \dim M = \pm n$.

If *n* is even, *f* is a composition of

$$M \hookrightarrow E \longrightarrow X$$

such that the normal bundle of *M* in *E* admits a complex structure, where $E \longrightarrow X$ is a complex vector bundle.

Quillen's geometric interpretation of elements in $MU^*(X)$

Each element $\alpha \in MU^{\pm n}$ can be represented by an oriented complex map $f : M \longrightarrow X$, where X is a smooth manifold and dim $X - \dim M = \pm n$.

If *n* is even, *f* is a composition of

$$M \hookrightarrow E \longrightarrow X$$

such that the normal bundle of *M* in *E* admits a complex structure, where $E \longrightarrow X$ is a complex vector bundle.

If *n* is odd, *E* is replaced by $E \times \mathbb{R}$.

Kronecker pairing

$$\langle,\rangle: MU^{\pm n}(X)\otimes MU_m(X)\longrightarrow MU_{m\mp n}.$$

Kronecker pairing

$$\langle,\rangle: MU^{\pm n}(X)\otimes MU_m(X)\longrightarrow MU_{m\mp n}.$$

For example, let X be a smooth manifold.

Kronecker pairing

$$\langle,\rangle: MU^{\pm n}(X)\otimes MU_m(X)\longrightarrow MU_{m\mp n}.$$

For example, let *X* be a smooth manifold. $\alpha \in MU^{-n}(X)$ is represented by a smooth fiber bundle $E \longrightarrow X$ with dim E – dim X = n.

Kronecker pairing

$$\langle,\rangle: MU^{\pm n}(X)\otimes MU_m(X)\longrightarrow MU_{m\mp n}.$$

For example, let *X* be a smooth manifold. $\alpha \in MU^{-n}(X)$ is represented by a smooth fiber bundle $E \longrightarrow X$ with dim E – dim X = n.

 $\beta \in MU_m(X)$ is represented by a smooth map $f: M \longrightarrow X$

Kronecker pairing

$$\langle,\rangle: MU^{\pm n}(X)\otimes MU_m(X)\longrightarrow MU_{m\mp n}.$$

For example, let *X* be a smooth manifold. $\alpha \in MU^{-n}(X)$ is represented by a smooth fiber bundle $E \longrightarrow X$ with dim E – dim X = n. $\beta \in MU_m(X)$ is represented by a smooth map $f : M \longrightarrow X$

Then $\langle \alpha, \beta \rangle$ is the bordism class of the pull-back $\tilde{f}^*(E)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Universal toric genus

$$\Phi:\Omega^{U,T^k}_*\longrightarrow MU^*(BT^k)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Universal toric genus

$$\Phi: \Omega^{U,T^k}_* \longrightarrow MU^*(BT^k)$$

- Defined by tom Dieck

Universal toric genus

$$\Phi: \Omega^{U,T^k}_* \longrightarrow MU^*(BT^k)$$

- Defined by tom Dieck
- Φ is a monomorphism (due to Hanke and Löffler)
- Re-defined by Buchstaber–Ray–Panov in a geometric way as follows:

$$[M]_{T^k} \longmapsto [\pi : ET^k \times_{T^k} M \longrightarrow BT^k]$$

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof of Theorem A

Take $[M]_{T^k} \in \Omega_n^{U,T^k}$, and $[f: N \longrightarrow BT^k] \in MU_*(BT^k)$,

・ロト・日本・日本・日本・日本

Proof of Theorem A

Take $[M]_{T^k} \in \Omega_n^{U,T^k}$, and $[f: N \longrightarrow BT^k] \in MU_*(BT^k)$, consider $\widetilde{f}^*(ET^k \times_{T^k} M) \xrightarrow{\widetilde{f}} ET^k \times_{T^k} M$ $\begin{array}{ccc} \pi' \downarrow & & \pi \downarrow \\ N & \xrightarrow{f} & BT^k \end{array}$

Take $[M]_{T^k} \in \Omega_n^{U,T^k}$, and $[f: N \longrightarrow BT^k] \in MU_*(BT^k)$, consider $\widetilde{f}^*(ET^k \times_{T^k} M) \xrightarrow{\widetilde{f}} ET^k \times_{T^k} M$ $\pi' \downarrow \qquad \pi \downarrow$ $N \xrightarrow{f} BT^k$ By universal toric genus and Kronecker pairing,

$$\langle \Phi([M]_{T^k}), [f: N \longrightarrow BT^k] \rangle = [\widetilde{f}^*(ET^k \times_{T^k} M)] \in MU_* = \Omega^U_*$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Take $[M]_{T^k} \in \Omega_n^{U,T^k}$, and $[f: N \longrightarrow BT^k] \in MU_*(BT^k)$, consider $\widetilde{f}^*(ET^k \times_{T^k} M) \xrightarrow{\widetilde{f}} ET^k \times_{T^k} M$ $\pi' \downarrow \qquad \pi \downarrow$ $N \xrightarrow{f} BT^k$

By universal toric genus and Kronecker pairing,

 $\langle \Phi([M]_{T^k}), [f: N \longrightarrow BT^k] \rangle = [\widetilde{f}^*(ET^k \times_{T^k} M)] \in MU_* = \Omega^U_*$

Remark: $\tilde{f}^*(ET^k \times_{T^k} M)$ is a closed unitary manifold of dimension=dim M + dim N.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Step I:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of Theorem A

Step I: Suppose that all equivariant cohomology Chern numbers of *M* vanish.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Proof of Theorem A

Step I: Suppose that all equivariant cohomology Chern numbers of *M* vanish.

$$\implies$$
 for any $f: N \longrightarrow BT^k$,

 $\langle \Phi([M]_{T^k}), [f: N \longrightarrow BT^k] \rangle = [\widetilde{f}^*(ET^k \times_{T^k} M)] = 0 \in MU_* = \Omega^U_*$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Proof of Theorem A

Step I: Suppose that all equivariant cohomology Chern numbers of *M* vanish.

$$\implies$$
 for any $f: N \longrightarrow BT^k$,

$$\langle \Phi([M]_{T^k}), [f: N \longrightarrow BT^k] \rangle = [\widetilde{f}^*(ET^k \times_{T^k} M)] = 0 \in MU_* = \Omega^U_*$$

 $\Longrightarrow \Phi([M]_{T^k}) = 0$

Step I: Suppose that all equivariant cohomology Chern numbers of *M* vanish.

$$\implies$$
 for any $f: N \longrightarrow BT^k$,

 $\langle \Phi([M]_{T^k}), [f: N \longrightarrow BT^k] \rangle = [\widetilde{f}^*(ET^k \times_{T^k} M)] = 0 \in MU_* = \Omega^U_*$

 $\Longrightarrow \Phi([M]_{T^k}) = 0$

 \implies [*M*]_{*T^k*} = 0 since Φ is injective.

・ロト・日本・日本・日本・日本・日本

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Step II:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Proof of Theorem A

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* . $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0$ in $MU_*(BT^k)$

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem A

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* . $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0$ in $MU_*(BT^k)$ Consider $\pi_!(c^{T^k}_{\omega}(M)) = c^{T^k}_{\omega}(M)[M] \in H^*(BT^k) = \mathbb{Z}[x_1,...,x_k],$

くしゃ 人間 そう イリット ビー うらう

Proof of Theorem A

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* . $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0$ in $MU_*(BT^k)$ Consider $\pi_!(c_{\omega}^{T^k}(M)) = c_{\omega}^{T^k}(M)[M] \in H^*(BT^k) = \mathbb{Z}[x_1, ..., x_k],$ where $\omega = (i_1, ..., i_r)$ is a partition.

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem A

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* . $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0$ in $MU_*(BT^k)$ Consider $\pi_!(c_{\omega}^{T^k}(M)) = c_{\omega}^{T^k}(M)[M] \in H^*(BT^k) = \mathbb{Z}[x_1, ..., x_k]$, where $\omega = (i_1, ..., i_r)$ is a partition.

If dim *M* is odd, then $\pi_!(c_{\omega}^{T^k}(M)) = 0$.

(日) (日) (日) (日) (日) (日) (日)

Proof of Theorem A

Step II: Suppose that $[M]_{T^k} = 0$ in Ω^{U,T^k}_* . $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0$ in $MU_*(BT^k)$ Consider $\pi_!(c_{\omega}^{T^k}(M)) = c_{\omega}^{T^k}(M)[M] \in H^*(BT^k) = \mathbb{Z}[x_1, ..., x_k],$ where $\omega = (i_1, ..., i_r)$ is a partition. If dim M is odd, then $\pi_!(c_{\omega}^{T^k}(M)) = 0$. If dim M = 2m, then $\pi_!(c_{\omega}^{T^k}(M)) \in H^{2|\omega|-2n}(BT^k)$

Step II: Suppose that $[M]_{\tau k} = 0$ in $\Omega_*^{U, \tau k}$. $\implies \Phi([M]_{T^k}) = [\pi : ET^k \times_{T^k} M \longrightarrow BT^k] = 0 \text{ in } MU_*(BT^k)$ Consider $\pi_1(c_{i,i}^{T^k}(M)) = c_{i,i}^{T^k}(M)[M] \in H^*(BT^k) = \mathbb{Z}[x_1, ..., x_k],$ where $\omega = (i_1, ..., i_r)$ is a partition. If dim *M* is odd, then $\pi_1(c_{\omega}^{T^k}(M)) = 0$. If dim M = 2m, then $\pi_1(c_{\perp}^{T^k}(M)) \in H^{2|\omega|-2n}(BT^k)$ Note: Clearly if $|\omega| < m$, then $\pi_1(c_{\omega}^{T^k}(M)) = 0$.

・ロト・西・・日・・日・・日・

Step II:(continued)

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$.

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$,

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}_{\omega}^{\mathcal{T}^k}(\boldsymbol{M})) = \sum_J n_J x^J$$

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}_{\omega}^{T^k}(\boldsymbol{M})) = \sum_J n_J x^J$$

where $J = (j_1, ..., j_k)$ with $|J| = |\omega| - m$,

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}^{\mathcal{T}^k}_{\omega}(\boldsymbol{M})) = \sum_J n_J x^J$$

where $J = (j_1, ..., j_k)$ with $|J| = |\omega| - m$, and $x^J = x_1^{j_1} \cdots x_k^{j_k}$.

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}_{\omega}^{\mathcal{T}^k}(\boldsymbol{M})) = \sum_J n_J x^J$$

where $J = (j_1, ..., j_k)$ with $|J| = |\omega| - m$, and $x^J = x_1^{j_1} \cdots x_k^{j_k}$.

For each J,

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}_{\omega}^{\mathcal{T}^k}(\boldsymbol{M})) = \sum_J n_J x^J$$

where $J = (j_1, ..., j_k)$ with $|J| = |\omega| - m$, and $x^J = x_1^{j_1} \cdots x_k^{j_k}$.

For each *J*, choose $N = \mathbb{C}P^{j_1} \times \cdots \times \mathbb{C}P^{j_k}$,

Step II:(continued)

We perform an induction on $|\omega| - m \ge 0$.

Easy to check that $\pi_!(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| = m$.

Assume inductively that $\pi_1(c_{\omega}^{T^k}(M)) = 0$ if $|\omega| - m \le \ell$. When $|\omega| - m = \ell + 1$, write

$$\pi_!(\boldsymbol{c}_{\omega}^{\mathcal{T}^k}(\boldsymbol{M})) = \sum_J n_J x^J$$

where $J = (j_1, ..., j_k)$ with $|J| = |\omega| - m$, and $x^J = x_1^{j_1} \cdots x_k^{j_k}$.

For each *J*, choose $N = \mathbb{C}P^{j_1} \times \cdots \times \mathbb{C}P^{j_k}$, we can obtain that $n_J = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You!